Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Scientific Computing with Python

You're reading from   Scientific Computing with Python High-performance scientific computing with NumPy, SciPy, and pandas

Arrow left icon
Product type Paperback
Published in Jul 2021
Publisher Packt
ISBN-13 9781838822323
Length 392 pages
Edition 2nd Edition
Languages
Tools
Arrow right icon
Authors (4):
Arrow left icon
Olivier Verdier Olivier Verdier
Author Profile Icon Olivier Verdier
Olivier Verdier
Jan Erik Solem Jan Erik Solem
Author Profile Icon Jan Erik Solem
Jan Erik Solem
Claus Führer Claus Führer
Author Profile Icon Claus Führer
Claus Führer
Claus Fuhrer Claus Fuhrer
Author Profile Icon Claus Fuhrer
Claus Fuhrer
Arrow right icon
View More author details
Toc

Table of Contents (23) Chapters Close

Preface 1. Getting Started 2. Variables and Basic Types FREE CHAPTER 3. Container Types 4. Linear Algebra - Arrays 5. Advanced Array Concepts 6. Plotting 7. Functions 8. Classes 9. Iterating 10. Series and Dataframes - Working with Pandas 11. Communication by a Graphical User Interface 12. Error and Exception Handling 13. Namespaces, Scopes, and Modules 14. Input and Output 15. Testing 16. Symbolic Computations - SymPy 17. Interacting with the Operating System 18. Python for Parallel Computing 19. Comprehensive Examples 20. About Packt 21. Other Books You May Enjoy 22. References

15.2.6 Float comparisons

Two floating-point numbers should not be compared with the == comparison, because the result of a computation is often slightly off due to rounding errors. There are numerous tools to test the equality of floats for testing purposes.

First, allclose checks that two arrays are almost equal. It can be used in a test function, as shown:

self.assertTrue(allclose(computed, expected))

Here, self refers to a unittest.Testcase instance. There are also testing tools in the numpy package testing. These are imported by using:

import numpy.testing

Testing that two scalars or two arrays are equal is done using numpy.testing.assert_array_allmost_equal or numpy.testing.assert_allclose. These methods differ in the way they describe the required accuracy, as shown in the preceding table, Table 15.1.

 factorization decomposes a given matrix into a product of an orthogonal matrix  and an upper triangular...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image