Monte Carlo methods are a powerful way to learn directly by sampling from the environment, but they have a big drawback—they rely on the full trajectory. They have to wait until the end of the episode, and only then can they update the state values. Therefore, a crucial factor is knowing what happens when the trajectory has no end, or if it's very long. The answer is that it will produce terrifying results. A similar solution to this problem has already come up in DP algorithms, where the state values are updated at each step, without waiting until the end. Instead of using the complete return accumulated during the trajectory, it just uses the immediate reward and the estimate of the next state value. A visual example of this update is given in figure 4.2 and shows the parts involved in a single step of learning. This technique is called bootstrapping...
United States
United Kingdom
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Argentina
Austria
Belgium
Bulgaria
Chile
Colombia
Cyprus
Czechia
Denmark
Ecuador
Egypt
Estonia
Finland
Greece
Hungary
Indonesia
Ireland
Italy
Japan
Latvia
Lithuania
Luxembourg
Malaysia
Malta
Mexico
Netherlands
New Zealand
Norway
Philippines
Poland
Portugal
Romania
Singapore
Slovakia
Slovenia
South Africa
South Korea
Sweden
Switzerland
Taiwan
Thailand
Turkey
Ukraine