Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Python Machine Learning by Example

You're reading from   Python Machine Learning by Example Build intelligent systems using Python, TensorFlow 2, PyTorch, and scikit-learn

Arrow left icon
Product type Paperback
Published in Oct 2020
Publisher Packt
ISBN-13 9781800209718
Length 526 pages
Edition 3rd Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Yuxi (Hayden) Liu Yuxi (Hayden) Liu
Author Profile Icon Yuxi (Hayden) Liu
Yuxi (Hayden) Liu
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Getting Started with Machine Learning and Python 2. Building a Movie Recommendation Engine with Naïve Bayes FREE CHAPTER 3. Recognizing Faces with Support Vector Machine 4. Predicting Online Ad Click-Through with Tree-Based Algorithms 5. Predicting Online Ad Click-Through with Logistic Regression 6. Scaling Up Prediction to Terabyte Click Logs 7. Predicting Stock Prices with Regression Algorithms 8. Predicting Stock Prices with Artificial Neural Networks 9. Mining the 20 Newsgroups Dataset with Text Analysis Techniques 10. Discovering Underlying Topics in the Newsgroups Dataset with Clustering and Topic Modeling 11. Machine Learning Best Practices 12. Categorizing Images of Clothing with Convolutional Neural Networks 13. Making Predictions with Sequences Using Recurrent Neural Networks 14. Making Decisions in Complex Environments with Reinforcement Learning 15. Other Books You May Enjoy
16. Index

Getting Started with Machine Learning and Python

It is believed that in the next 30 years, artificial intelligence (AI) will outpace human knowledge. Regardless of whether it will lead to job losses, analytical and machine learning skills are becoming increasingly important. In fact, this point has been emphasized by the most influential business leaders, including the Microsoft co-founder, Bill Gates, Tesla CEO, Elon Musk, and former Google executive chairman, Eric Schmidt.

In this chapter, we will kick off our machine learning journey with the basic, yet important, concepts of machine learning. We will start with what machine learning is all about, why we need it, and its evolution over a few decades. We will then discuss typical machine learning tasks and explore several essential techniques of working with data and working with models.

At the end of the chapter, we will also set up the software for Python, the most popular language for machine learning and data science, and its libraries and tools that are required for this book.

We will go into detail on the following topics:

  • The importance of machine learning
  • The core of machine learning—generalizing with data
  • Overfitting and underfitting
  • The bias-variance trade-off
  • Techniques to avoid overfitting
  • Techniques for data preprocessing
  • Techniques for feature engineering
  • Techniques for model aggregation
  • Setting up a Python environment
  • Installing the main Python packages
  • Introducing TensorFlow 2
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image