Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Python Data Structures and Algorithms

You're reading from   Python Data Structures and Algorithms Improve application performance with graphs, stacks, and queues

Arrow left icon
Product type Paperback
Published in May 2017
Publisher Packt
ISBN-13 9781786467355
Length 310 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Benjamin Baka Benjamin Baka
Author Profile Icon Benjamin Baka
Benjamin Baka
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface 1. Python Objects, Types, and Expressions FREE CHAPTER 2. Python Data Types and Structures 3. Principles of Algorithm Design 4. Lists and Pointer Structures 5. Stacks and Queues 6. Trees 7. Hashing and Symbol Tables 8. Graphs and Other Algorithms 9. Searching 10. Sorting 11. Selection Algorithms 12. Design Techniques and Strategies 13. Implementations, Applications, and Tools

Graph traversal


Since graphs don't necessarily have an ordered structure, traversing a graph can be more involving. Traversal normally involves keeping track of which nodes or vertices have already been visited and which ones have not. A common strategy is to follow a path until a dead end is reached, then walking back up until there is a point where there is an alternative path. We can also iteratively move from one node to another in order to traverse the full graph or part of it. In the next section, we will discuss breadth and depth-first search algorithms for graph traversal.

Breadth-first search

The breadth-first search algorithm starts at a node, chooses that node or vertex as its root node, and visits the neighboring nodes, after which it explores neighbors on the next level of the graph.

Consider the following diagram as a graph:

The diagram is an example of an undirected graph. We continue to use this type of graph to help make explanation easy without being too verbose.

The adjacency...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image