Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Practical Data Analysis

You're reading from   Practical Data Analysis Pandas, MongoDB, Apache Spark, and more

Arrow left icon
Product type Paperback
Published in Sep 2016
Publisher
ISBN-13 9781785289712
Length 338 pages
Edition 2nd Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Hector Cuesta Hector Cuesta
Author Profile Icon Hector Cuesta
Hector Cuesta
Dr. Sampath Kumar Dr. Sampath Kumar
Author Profile Icon Dr. Sampath Kumar
Dr. Sampath Kumar
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. Getting Started 2. Preprocessing Data FREE CHAPTER 3. Getting to Grips with Visualization 4. Text Classification 5. Similarity-Based Image Retrieval 6. Simulation of Stock Prices 7. Predicting Gold Prices 8. Working with Support Vector Machines 9. Modeling Infectious Diseases with Cellular Automata 10. Working with Social Graphs 11. Working with Twitter Data 12. Data Processing and Aggregation with MongoDB 13. Working with MapReduce 14. Online Data Analysis with Jupyter and Wakari 15. Understanding Data Processing using Apache Spark

Lineal regression


If we want to predict a quantitative value, regression is a great tool due to it uses. It's an independent variable to explain the behavior of a phenomenon such as temperature, asset prices, house prices, and so on. Linear regression finds the best fitting in a straight line.

We use regression or forecast all the time in our daily lives: when we calculate the gas or the time required for a car trip based on previous data (distance, traffic, weather, and so on). In its simplest form, you can think of it in this way: first, get previous data from the phenomena, for example, how much time was spent on previous trips and what was the distance. Then, look at the values form, and try to find a metric to forecast the next value.

In this section, we will program a very simple example of linear regression using scikit-learn, which is a machine-learning library for Python. For this concrete example, we will use the Boston Housing dataset, which represents the data of 506 neighborhoods...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at ₹800/month. Cancel anytime