Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Practical Data Analysis

You're reading from   Practical Data Analysis Pandas, MongoDB, Apache Spark, and more

Arrow left icon
Product type Paperback
Published in Sep 2016
Publisher
ISBN-13 9781785289712
Length 338 pages
Edition 2nd Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Hector Cuesta Hector Cuesta
Author Profile Icon Hector Cuesta
Hector Cuesta
Dr. Sampath Kumar Dr. Sampath Kumar
Author Profile Icon Dr. Sampath Kumar
Dr. Sampath Kumar
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. Getting Started FREE CHAPTER 2. Preprocessing Data 3. Getting to Grips with Visualization 4. Text Classification 5. Similarity-Based Image Retrieval 6. Simulation of Stock Prices 7. Predicting Gold Prices 8. Working with Support Vector Machines 9. Modeling Infectious Diseases with Cellular Automata 10. Working with Social Graphs 11. Working with Twitter Data 12. Data Processing and Aggregation with MongoDB 13. Working with MapReduce 14. Online Data Analysis with Jupyter and Wakari 15. Understanding Data Processing using Apache Spark

Getting started with pandas

The pandas library is a great library for data manipulation and analysis, written by Wes McKinney. The pandas library provides us with the optimized data structures, series and DataFrame, which are well-suited for descriptive statistics, indexing, and aggregation. Pandas is already installed in the Anaconda distribution used in Wakari. In this section, we will present the basic operations with pandas for Time Series and Multivariate data. We can find more information about pandas from its website:

http://pandas.pydata.org/

Working with Time Series

Time Series help us to understand the changes in a variable over time. Pandas include specific functionality in order to work with Time Series transparently. For this section, we need to upload the Gold.csv file used in Chapter 7, Predicting Gold Prices. The first five rows in the file will look like this:

date,price
1/31/2003,367.5
2/28/2003,347.5
3/31/2003,334.9
4/30/2003,336.8
5/30/2003,361.4
.  .  .

We will load the...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime