Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Natural Language Processing with Python Quick Start Guide

You're reading from   Natural Language Processing with Python Quick Start Guide Going from a Python developer to an effective Natural Language Processing Engineer

Arrow left icon
Product type Paperback
Published in Nov 2018
Publisher Packt
ISBN-13 9781789130386
Length 182 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Nirant Kasliwal Nirant Kasliwal
Author Profile Icon Nirant Kasliwal
Nirant Kasliwal
Arrow right icon
View More author details
Toc

Word representations

The most popular names in word embedding are word2vec by Google (Mikolov) and GloVe by Stanford (Pennington, Socher, and Manning). fastText seems to be fairly popular for multilingual sub-word embeddings.

We advise that you don't use word2vec or GloVe. Instead, use fastText vectors, which are much better and from the same authors. word2vec was introduced by T. Mikolov et. al. (https://scholar.google.com/citations?user=oBu8kMMAAAAJ&hl=en) when he was with Google, and it performs well on word similarity and analogy tasks.

GloVe was introduced by Pennington, Socher, and Manning from Stanford in 2014 as a statistical approximation for word embedding. The word vectors are created by the matrix factorization of word-word co-occurrence matrices.

If picking between the lesser of two evils, we recommend using GloVe over word2vec. This is because GloVe outperforms...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at ₹800/month. Cancel anytime