Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
MATLAB for Machine Learning

You're reading from   MATLAB for Machine Learning Practical examples of regression, clustering and neural networks

Arrow left icon
Product type Paperback
Published in Aug 2017
Publisher Packt
ISBN-13 9781788398435
Length 382 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Pavan Kumar Kolluru Pavan Kumar Kolluru
Author Profile Icon Pavan Kumar Kolluru
Pavan Kumar Kolluru
Giuseppe Ciaburro Giuseppe Ciaburro
Author Profile Icon Giuseppe Ciaburro
Giuseppe Ciaburro
Arrow right icon
View More author details
Toc

Table of Contents (10) Chapters Close

Preface 1. Getting Started with MATLAB Machine Learning FREE CHAPTER 2. Importing and Organizing Data in MATLAB 3. From Data to Knowledge Discovery 4. Finding Relationships between Variables - Regression Techniques 5. Pattern Recognition through Classification Algorithms 6. Identifying Groups of Data Using Clustering Methods 7. Simulation of Human Thinking - Artificial Neural Networks 8. Improving the Performance of the Machine Learning Model - Dimensionality Reduction 9. Machine Learning in Practice

Summary

In this chapter, we learned how to perform an accurate cluster analysis in the MATLAB environment. First, we explored how to measure similarity. We learned concepts such as proximity between elements, similarity and dissimilarity measures, and Euclidean, Minkowski, Manhattan, and cosine distance metrics. We looked at a couple of methods for grouping objects: hierarchical clustering and partitioning clustering. In the first method, clusters are constructed by recursively partitioning the instances in either a top-down or bottom-up fashion. The second one decomposes a dataset into a set of disjoint clusters.

We discovered hierarchical clustering in MATLAB using the pdist, linkage, and cluster functions. These functions perform agglomerative clustering. We learned how to calculate the distance between the objects through the pdist function. To determine the proximity of objects...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at ₹800/month. Cancel anytime