Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Mastering Transformers
Mastering Transformers

Mastering Transformers: The Journey from BERT to Large Language Models and Stable Diffusion , Second Edition

Arrow left icon
Profile Icon Savaş Yıldırım Profile Icon Meysam Asgari- Chenaghlu
Arrow right icon
₹799 ₹2382.99
Full star icon Full star icon Full star icon Full star icon Full star icon 5 (5 Ratings)
eBook Jun 2024 462 pages 2nd Edition
eBook
₹799 ₹2382.99
Paperback
₹2978.99
Subscription
Free Trial
Renews at ₹800p/m
Arrow left icon
Profile Icon Savaş Yıldırım Profile Icon Meysam Asgari- Chenaghlu
Arrow right icon
₹799 ₹2382.99
Full star icon Full star icon Full star icon Full star icon Full star icon 5 (5 Ratings)
eBook Jun 2024 462 pages 2nd Edition
eBook
₹799 ₹2382.99
Paperback
₹2978.99
Subscription
Free Trial
Renews at ₹800p/m
eBook
₹799 ₹2382.99
Paperback
₹2978.99
Subscription
Free Trial
Renews at ₹800p/m

What do you get with eBook?

Product feature icon Instant access to your Digital eBook purchase
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
Product feature icon AI Assistant (beta) to help accelerate your learning
OR
Modal Close icon
Payment Processing...
tick Completed

Billing Address

Table of content icon View table of contents Preview book icon Preview Book

Mastering Transformers

Left arrow icon Right arrow icon
Download code icon Download Code

Key benefits

  • Understand the complexity of deep learning architecture and transformers architecture
  • Create solutions to industrial natural language processing (NLP) and computer vision (CV) problems
  • Explore challenges in the preparation process, such as problem and language-specific dataset transformation
  • Purchase of the print or Kindle book includes a free PDF eBook

Description

Transformer-based language models such as BERT, T5, GPT, DALL-E, and ChatGPT have dominated NLP studies and become a new paradigm. Thanks to their accurate and fast fine-tuning capabilities, transformer-based language models have been able to outperform traditional machine learning-based approaches for many challenging natural language understanding (NLU) problems. Aside from NLP, a fast-growing area in multimodal learning and generative AI has recently been established, showing promising results. Mastering Transformers will help you understand and implement multimodal solutions, including text-to-image. Computer vision solutions that are based on transformers are also explained in the book. You’ll get started by understanding various transformer models before learning how to train different autoregressive language models such as GPT and XLNet. The book will also get you up to speed with boosting model performance, as well as tracking model training using the TensorBoard toolkit. In the later chapters, you’ll focus on using vision transformers to solve computer vision problems. Finally, you’ll discover how to harness the power of transformers to model time series data and for predicting. By the end of this transformers book, you’ll have an understanding of transformer models and how to use them to solve challenges in NLP and CV.

Who is this book for?

This book is for deep learning researchers, hands-on practitioners, and ML/NLP researchers. Educators, as well as students who have a good command of programming subjects, knowledge in the field of machine learning and artificial intelligence, and who want to develop apps in the field of NLP as well as multimodal tasks will also benefit from this book’s hands-on approach. Knowledge of Python (or any programming language) and machine learning literature, as well as a basic understanding of computer science, are required.

What you will learn

  • Focus on solving simple-to-complex NLP problems with Python
  • Discover how to solve classification/regression problems with traditional NLP approaches
  • Train a language model and explore how to fine-tune models to the downstream tasks
  • Understand how to use transformers for generative AI and computer vision tasks
  • Build transformer-based NLP apps with the Python transformers library
  • Focus on language generation such as machine translation and conversational AI in any language
  • Speed up transformer model inference to reduce latency

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : Jun 03, 2024
Length: 462 pages
Edition : 2nd
Language : English
ISBN-13 : 9781837631506
Category :
Languages :
Concepts :

What do you get with eBook?

Product feature icon Instant access to your Digital eBook purchase
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
Product feature icon AI Assistant (beta) to help accelerate your learning
OR
Modal Close icon
Payment Processing...
tick Completed

Billing Address

Product Details

Publication date : Jun 03, 2024
Length: 462 pages
Edition : 2nd
Language : English
ISBN-13 : 9781837631506
Category :
Languages :
Concepts :

Packt Subscriptions

See our plans and pricing
Modal Close icon
₹800 billed monthly
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
₹4500 billed annually
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just ₹400 each
Feature tick icon Exclusive print discounts
₹5000 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just ₹400 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total 10,650.97
Mastering Transformers
₹2978.99
Building LLM Powered  Applications
₹3723.99
Mastering NLP from Foundations to LLMs
₹3947.99
Total 10,650.97 Stars icon
Banner background image

Table of Contents

24 Chapters
Part 1: Recent Developments in the Field, Installations, and Hello World Applications Chevron down icon Chevron up icon
Chapter 1: From Bag-of-Words to the Transformers Chevron down icon Chevron up icon
Chapter 2: A Hands-On Introduction to the Subject Chevron down icon Chevron up icon
Part 2: Transformer Models: From Autoencoders to Autoregressive Models Chevron down icon Chevron up icon
Chapter 3: Autoencoding Language Models Chevron down icon Chevron up icon
Chapter 4: From Generative Models to Large Language Models Chevron down icon Chevron up icon
Chapter 5: Fine-Tuning Language Models for Text Classification Chevron down icon Chevron up icon
Chapter 6: Fine-Tuning Language Models for Token Classification Chevron down icon Chevron up icon
Chapter 7: Text Representation Chevron down icon Chevron up icon
Chapter 8: Boosting Model Performance Chevron down icon Chevron up icon
Chapter 9: Parameter Efficient Fine-Tuning Chevron down icon Chevron up icon
Part 3: Advanced Topics Chevron down icon Chevron up icon
Chapter 10: Large Language Models Chevron down icon Chevron up icon
Chapter 11: Explainable AI (XAI) in NLP Chevron down icon Chevron up icon
Chapter 12: Working with Efficient Transformers Chevron down icon Chevron up icon
Chapter 13: Cross-Lingual and Multilingual Language Modeling Chevron down icon Chevron up icon
Chapter 14: Serving Transformer Models Chevron down icon Chevron up icon
Chapter 15: Model Tracking and Monitoring Chevron down icon Chevron up icon
Part 4: Transformers beyond NLP Chevron down icon Chevron up icon
Chapter 16: Vision Transformers Chevron down icon Chevron up icon
Chapter 17: Multimodal Generative Transformers Chevron down icon Chevron up icon
Chapter 18: Revisiting Transformers Architecture for Time Series Chevron down icon Chevron up icon
Index Chevron down icon Chevron up icon
Other Books You May Enjoy Chevron down icon Chevron up icon

Customer reviews

Rating distribution
Full star icon Full star icon Full star icon Full star icon Full star icon 5
(5 Ratings)
5 star 100%
4 star 0%
3 star 0%
2 star 0%
1 star 0%
DEVASSYJP Aug 21, 2024
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Transformer-based language models like BERT, T5, GPT, DALL-E, and ChatGPT have revolutionized natural language processing (NLP) by outperforming traditional machine learning methods in complex natural language understanding (NLU) tasks. This book explores the power of Transformers beyond NLP, diving into the rapidly growing fields of multimodal learning and generative Al with impressive results.Readers will learn to implement multimodal solutions, including text-to-image generation, and will understand the fundamentals of various transformer models. The book also covers training autoregressive language models like GPT and XLNet, boosting model performance, and tracking model training using TensorBoard. Later chapters focus on using vision transformers for computer vision problems and applying transformers to model time series data and predictions.By the end, readers will have a strong grasp of transformer models and their applications in solving challenges across NLP and computer vision. This book is an invaluable resource for those looking to enhance their expertise in thesecutting-edge technologies.
Amazon Verified review Amazon
Rohan Pandit Jun 09, 2024
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Transformer-based language models like BERT, T5, GPT, DALL-E, and ChatGPT have revolutionized natural language processing (NLP) by outperforming traditional machine learning methods in complex natural language understanding (NLU) tasks. This book explores the power of Transformers beyond NLP, diving into the rapidly growing fields of multimodal learning and generative AI with impressive results.Readers will learn to implement multimodal solutions, including text-to-image generation, and will understand the fundamentals of various transformer models. The book also covers training autoregressive language models like GPT and XLNet, boosting model performance, and tracking model training using TensorBoard. Later chapters focus on using vision transformers for computer vision problems and applying transformers to model time series data and predictions.By the end, readers will have a strong grasp of transformer models and their applications in solving challenges across NLP and computer vision. This book is an invaluable resource for those looking to enhance their expertise in these cutting-edge technologies.
Amazon Verified review Amazon
Soni Raju Jun 26, 2024
Full star icon Full star icon Full star icon Full star icon Full star icon 5
This book explores what readers will learn to implement multimodal solutions, including text-to-image generation, and will understand the fundamentals of various transformer models. The book also covers training autoregressive language models like GPT and XLNet, boosting model performance, and tracking model training using TensorBoard. In the end, readers will have a strong grasp of transformer models and their applications in solving challenges across NLP and computer vision. This book is an invaluable resource.
Amazon Verified review Amazon
The fan is incredible with 4 different variations of air speed. Perfect for outdoors. You can just clip it on shirt or pants and you are good to go. Loved it Aug 14, 2024
Full star icon Full star icon Full star icon Full star icon Full star icon 5
This book goes through the evolution of Natural Language Processing (NLP), from traditional methods to the cutting-edge Transformer architecture. It serves as an invaluable resource for professionals and enthusiasts in machine learning, deep learning, and NLP.Key Highlights:1. From Basics to Advanced: The book starts with the foundational concepts, making it accessible for beginners, and progresses to advanced topics, ensuring that even seasoned professionals find value.2. Hands-On Approach: The authors provide practical examples and code snippets, allowing readers to experiment and implement concepts in real-time.3. Comprehensive Coverage: Topics like autoencoding language models, generative models, fine-tuning for various tasks, and the latest advancements in large language models are covered in-depth.4. Multimodal Learning: The book explores the exciting realm of multimodal learning, discussing how Transformers can be used beyond NLP, such as in computer vision and generative AI.5. Future-Proofing: With a detailed look at efficient Transformers and parameter-efficient fine-tuning, the book prepares you for the future of scalable and sustainable AI models.Whether you're a researcher, practitioner, or educator in the AI field, this book is a must-read to stay ahead in the rapidly evolving landscape of NLP and Transformers.
Amazon Verified review Amazon
Banachan Aug 26, 2024
Full star icon Full star icon Full star icon Full star icon Full star icon 5
I have the 1st edition of the book and this 2nd edition is a great update to the first one to keep up with the times. If you enjoyed the 1st ed, then you don't want to miss this second update. Lots of new information given the new and rapid developments the LLM space has gone through. It continues to be a great comprehensive guide to understanding and implementing Transformer models in various artificial intelligence (AI) tasks. It provides a deep dive into the architecture of Transformers, showcasing their effectiveness across a range of areas including Natural Language Processing (NLP), computer vision, time series analysis, and multimodal tasks.It goes more into details on how Transformers is applied to time series data, covering the fundamental concepts of time series and demonstrating how it can be effectively utilized for these types of data, which many models struggle with due to their complexity. It goes into the ubiquity and superiority in handling diverse tasks compared to other architectures and their pivotal role in the rise of Generative AI within both industry and academic communities. A fun read at that.It has quite a comprehensive coverage, providing an in-depth look at the theory and application across different domains, making it a valuable resource for those interested in understanding various aspects of this powerful model architecture. There are ample practical examples through step-by-step guidance which aids in the understanding and implementation of concepts discussed. Some cutting-edge Content to keep up with the times, like current and emerging trends in generative tasks and multimodal learning.There are recent topics in this field that I thought would have been nice if included, like topics on ethics on Gen AI, deployment scenarios, emergence of small language models and what it means, how RLHF plays more into the area, how it can work with quantum computing, etc. While I am a proponent of deep dives, beginners to transformers might not get the more generalized explanations from scratch. I figured it can't be all things to all people. But an overall great read.
Amazon Verified review Amazon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

How do I buy and download an eBook? Chevron down icon Chevron up icon

Where there is an eBook version of a title available, you can buy it from the book details for that title. Add either the standalone eBook or the eBook and print book bundle to your shopping cart. Your eBook will show in your cart as a product on its own. After completing checkout and payment in the normal way, you will receive your receipt on the screen containing a link to a personalised PDF download file. This link will remain active for 30 days. You can download backup copies of the file by logging in to your account at any time.

If you already have Adobe reader installed, then clicking on the link will download and open the PDF file directly. If you don't, then save the PDF file on your machine and download the Reader to view it.

Please Note: Packt eBooks are non-returnable and non-refundable.

Packt eBook and Licensing When you buy an eBook from Packt Publishing, completing your purchase means you accept the terms of our licence agreement. Please read the full text of the agreement. In it we have tried to balance the need for the ebook to be usable for you the reader with our needs to protect the rights of us as Publishers and of our authors. In summary, the agreement says:

  • You may make copies of your eBook for your own use onto any machine
  • You may not pass copies of the eBook on to anyone else
How can I make a purchase on your website? Chevron down icon Chevron up icon

If you want to purchase a video course, eBook or Bundle (Print+eBook) please follow below steps:

  1. Register on our website using your email address and the password.
  2. Search for the title by name or ISBN using the search option.
  3. Select the title you want to purchase.
  4. Choose the format you wish to purchase the title in; if you order the Print Book, you get a free eBook copy of the same title. 
  5. Proceed with the checkout process (payment to be made using Credit Card, Debit Cart, or PayPal)
Where can I access support around an eBook? Chevron down icon Chevron up icon
  • If you experience a problem with using or installing Adobe Reader, the contact Adobe directly.
  • To view the errata for the book, see www.packtpub.com/support and view the pages for the title you have.
  • To view your account details or to download a new copy of the book go to www.packtpub.com/account
  • To contact us directly if a problem is not resolved, use www.packtpub.com/contact-us
What eBook formats do Packt support? Chevron down icon Chevron up icon

Our eBooks are currently available in a variety of formats such as PDF and ePubs. In the future, this may well change with trends and development in technology, but please note that our PDFs are not Adobe eBook Reader format, which has greater restrictions on security.

You will need to use Adobe Reader v9 or later in order to read Packt's PDF eBooks.

What are the benefits of eBooks? Chevron down icon Chevron up icon
  • You can get the information you need immediately
  • You can easily take them with you on a laptop
  • You can download them an unlimited number of times
  • You can print them out
  • They are copy-paste enabled
  • They are searchable
  • There is no password protection
  • They are lower price than print
  • They save resources and space
What is an eBook? Chevron down icon Chevron up icon

Packt eBooks are a complete electronic version of the print edition, available in PDF and ePub formats. Every piece of content down to the page numbering is the same. Because we save the costs of printing and shipping the book to you, we are able to offer eBooks at a lower cost than print editions.

When you have purchased an eBook, simply login to your account and click on the link in Your Download Area. We recommend you saving the file to your hard drive before opening it.

For optimal viewing of our eBooks, we recommend you download and install the free Adobe Reader version 9.