Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Mastering Python Design Patterns

You're reading from   Mastering Python Design Patterns Start learning Python programming to a better standard by mastering the art of Python design patterns

Arrow left icon
Product type Paperback
Published in Jan 2015
Publisher
ISBN-13 9781783989324
Length 212 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Sakis Kasampalis Sakis Kasampalis
Author Profile Icon Sakis Kasampalis
Sakis Kasampalis
Arrow right icon
View More author details
Toc

Table of Contents (18) Chapters Close

Preface 1. The Factory Pattern FREE CHAPTER 2. The Builder Pattern 3. The Prototype Pattern 4. The Adapter Pattern 5. The Decorator Pattern 6. The Facade Pattern 7. The Flyweight Pattern 8. The Model-View-Controller Pattern 9. The Proxy Pattern 10. The Chain of Responsibility Pattern 11. The Command Pattern 12. The Interpreter Pattern 13. The Observer Pattern 14. The State Pattern 15. The Strategy Pattern 16. The Template Pattern Index

Implementation


There are many ways to implement Chain of Responsibility in Python, but my favorite implementation is the one by Vespe Savikko [j.mp/savviko]. Vespe's implementation uses dynamic dispatching in a Pythonic style to handle requests [j.mp/ddispatch].

Let's implement a simple event-based system using Vespe's implementation as a guide. The following is the UML class diagram of the system:

The Event class describes an event. We'll keep it simple, so in our case an event has only name:

class Event: 
    def __init__(self, name): 
        self.name = name 

    def __str__(self): 
        return self.name 

The Widget class is the core class of the application. The parent aggregation shown in the UML diagram indicates that each widget can have a reference to a parent object, which by convention, we assume is a Widget instance. Note, however, that according to the rules of inheritance, an instance of any of the subclasses of Widget (for example, an instance of MsgText) is also an instance...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image