Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Mastering Matplotlib

You're reading from   Mastering Matplotlib A practical guide that takes you beyond the basics of matplotlib and gives solutions to plot complex data

Arrow left icon
Product type Paperback
Published in Jun 2015
Publisher
ISBN-13 9781783987542
Length 292 pages
Edition 1st Edition
Languages
Arrow right icon
Toc

Table of Contents (11) Chapters Close

Preface 1. Getting Up to Speed FREE CHAPTER 2. The matplotlib Architecture 3. matplotlib APIs and Integrations 4. Event Handling and Interactive Plots 5. High-level Plotting and Data Analysis 6. Customization and Configuration 7. Deploying matplotlib in Cloud Environments 8. matplotlib and Big Data 9. Clustering for matplotlib Index

The scripting layer


While the backend layer focuses on providing a common interface to the toolkits and rendering the primitives and containers of the artist layer, the scripting layer is the user-facing interface that simplifies the task of working with other layers.

Programmers who integrate matplotlib with application servers will often find it more convenient to work directly with the backend and artist layers. However, for the scientists' daily use, data visualization, or exploratory interactions, pyplot—the scripting layer—is a better option. This is what we use in most of the IPython Notebooks in this book.

The pyplot interface is much less verbose; one can get insights into one's data in very few steps. Under the covers, pyplot uses module-level objects to track the state of the data so that the user does not have to create things like figures, axes, canvases, figure canvas managers, or preferred backends.

We will take a quick look at pyplot's internals later in this chapter (as well...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image