Search icon CANCEL
Subscription
0
Cart icon
Close icon
You have no products in your basket yet
Save more on your purchases!
Savings automatically calculated. No voucher code required
Arrow left icon
All Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletters
Free Learning
Arrow right icon
Mastering Azure Machine Learning

You're reading from  Mastering Azure Machine Learning

Product type Book
Published in Apr 2020
Publisher Packt
ISBN-13 9781789807554
Pages 436 pages
Edition 1st Edition
Languages
Authors (2):
Christoph Körner Christoph Körner
Profile icon Christoph Körner
Kaijisse Waaijer Kaijisse Waaijer
Profile icon Kaijisse Waaijer
View More author details

Table of Contents (20) Chapters

Preface Section 1: Azure Machine Learning
1. Building an end-to-end machine learning pipeline in Azure 2. Choosing a machine learning service in Azure Section 2: Experimentation and Data Preparation
3. Data experimentation and visualization using Azure 4. ETL, data preparation, and feature extraction 5. Azure Machine Learning pipelines 6. Advanced feature extraction with NLP Section 3: Training Machine Learning Models
7. Building ML models using Azure Machine Learning 8. Training deep neural networks on Azure 9. Hyperparameter tuning and Automated Machine Learning 10. Distributed machine learning on Azure 11. Building a recommendation engine in Azure Section 4: Optimization and Deployment of Machine Learning Models
12. Deploying and operating machine learning models 13. MLOps—DevOps for machine learning 14. What's next? Index

Summary

In this chapter, we discussed the need for different types of recommendation engines, from non-personalized ones to rating- and content-based ones, as well as hybrid models.

We learned that content-based recommendation engines use feature vectors and cosine similarity to compute similar items and similar users based on content alone. This allows us to make recommendations via k-means clustering or tree-based regression models. One important consideration is the embedding of categorical data, which, if possible, should use semantic embedding to avoid confusing similarities based on one-hot or label encodings.

Rating-based recommendations or collaborative filtering methods rely on user-item interactions, so-called ratings or feedback. While explicit feedback is the most obvious possibility for collecting user ratings through ordinal or binary scales, we need to make sure that those ratings are properly normalized.

Another possibility is to directly observe the feedback...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at ₹800/month. Cancel anytime}