Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Machine Learning with the Elastic Stack

You're reading from   Machine Learning with the Elastic Stack Gain valuable insights from your data with Elastic Stack's machine learning features

Arrow left icon
Product type Paperback
Published in May 2021
Publisher Packt
ISBN-13 9781801070034
Length 450 pages
Edition 2nd Edition
Languages
Arrow right icon
Authors (3):
Arrow left icon
Camilla Montonen Camilla Montonen
Author Profile Icon Camilla Montonen
Camilla Montonen
Rich Collier Rich Collier
Author Profile Icon Rich Collier
Rich Collier
Bahaaldine Azarmi Bahaaldine Azarmi
Author Profile Icon Bahaaldine Azarmi
Bahaaldine Azarmi
Arrow right icon
View More author details
Toc

Table of Contents (19) Chapters Close

Preface 1. Section 1 – Getting Started with Machine Learning with Elastic Stack
2. Chapter 1: Machine Learning for IT FREE CHAPTER 3. Chapter 2: Enabling and Operationalization 4. Section 2 – Time Series Analysis – Anomaly Detection and Forecasting
5. Chapter 3: Anomaly Detection 6. Chapter 4: Forecasting 7. Chapter 5: Interpreting Results 8. Chapter 6: Alerting on ML Analysis 9. Chapter 7: AIOps and Root Cause Analysis 10. Chapter 8: Anomaly Detection in Other Elastic Stack Apps 11. Section 3 – Data Frame Analysis
12. Chapter 9: Introducing Data Frame Analytics 13. Chapter 10: Outlier Detection 14. Chapter 11: Classification Analysis 15. Chapter 12: Regression 16. Chapter 13: Inference 17. Other Books You May Enjoy Appendix: Anomaly Detection Tips

Managing Elastic ML via the API

As with just about everything in the Elastic Stack, ML can also be completely automated via API calls—including job configuration, execution, and result gathering. Actually, all interactions you have in the Kibana UI leverage the ML API behind the scenes. You could, for example, completely write your own UI if there were specific workflows or visualizations that you wanted.

Note

For more in-depth information about the anomaly detection APIs, please refer to elastic.co/guide/en/machine-learning/current/ml-api-quickref.html. The data frame analytics part of Elastic ML has a completely separate API, which will be discussed in Chapters 9 to 13.

We won't go into each API call, but we would like to highlight some parts that are worth a detour.

The obvious first API to mention is the job creation API, which allows the creation of the ML job configuration. For example, if you wanted to recreate the population analysis job shown in Figure...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime