Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Machine Learning with Apache Spark Quick Start Guide

You're reading from   Machine Learning with Apache Spark Quick Start Guide Uncover patterns, derive actionable insights, and learn from big data using MLlib

Arrow left icon
Product type Paperback
Published in Dec 2018
Publisher Packt
ISBN-13 9781789346565
Length 240 pages
Edition 1st Edition
Languages
Concepts
Arrow right icon
Author (1):
Arrow left icon
Jillur Quddus Jillur Quddus
Author Profile Icon Jillur Quddus
Jillur Quddus
Arrow right icon
View More author details
Toc

Principal component analysis

There are numerous real-world use cases where the number of features available that may potentially be used to train a model is very large. A common example is economic data, and using its constituent stock price data, employment data, banking data, industrial data, and housing data together to predict the gross domestic product (GDP). Such types of data are said to have high dimensionality. Though they offer numerous features that can be used to model a given use case, high-dimensional datasets increase the computational complexity of machine learning algorithms, and more importantly may also result in over fitting. Over fitting is one of the results of the curse of dimensionality, which formally describes the problem of analyzing data in high-dimensional spaces (which means that the data may contain many attributes, typically hundreds or even thousands...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at ₹800/month. Cancel anytime