Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Machine Learning Infrastructure and Best Practices for Software Engineers

You're reading from   Machine Learning Infrastructure and Best Practices for Software Engineers Take your machine learning software from a prototype to a fully fledged software system

Arrow left icon
Product type Paperback
Published in Jan 2024
Publisher Packt
ISBN-13 9781837634064
Length 346 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Miroslaw Staron Miroslaw Staron
Author Profile Icon Miroslaw Staron
Miroslaw Staron
Arrow right icon
View More author details
Toc

Table of Contents (24) Chapters Close

Preface 1. Part 1:Machine Learning Landscape in Software Engineering
2. Machine Learning Compared to Traditional Software FREE CHAPTER 3. Elements of a Machine Learning System 4. Data in Software Systems – Text, Images, Code, and Their Annotations 5. Data Acquisition, Data Quality, and Noise 6. Quantifying and Improving Data Properties 7. Part 2: Data Acquisition and Management
8. Processing Data in Machine Learning Systems 9. Feature Engineering for Numerical and Image Data 10. Feature Engineering for Natural Language Data 11. Part 3: Design and Development of ML Systems
12. Types of Machine Learning Systems – Feature-Based and Raw Data-Based (Deep Learning) 13. Training and Evaluating Classical Machine Learning Systems and Neural Networks 14. Training and Evaluation of Advanced ML Algorithms – GPT and Autoencoders 15. Designing Machine Learning Pipelines (MLOps) and Their Testing 16. Designing and Implementing Large-Scale, Robust ML Software 17. Part 4: Ethical Aspects of Data Management and ML System Development
18. Ethics in Data Acquisition and Management 19. Ethics in Machine Learning Systems 20. Integrating ML Systems in Ecosystems 21. Summary and Where to Go Next 22. Index 23. Other Books You May Enjoy

Summary

Machine learning and traditional software are often perceived as two alternatives. However, they are more like siblings – one cannot function without the other. Machine learning models are very good at solving constrained problems, but they require traditional software for data collection, preparation, and presentation.

The probabilistic nature of machine learning models requires additional elements to make them useful in the context of complete software products. Therefore, we need to embrace this nature and use it to our advantage. Even for safety-critical systems, we could (and should) use machine learning when we know how to design safety mechanisms to prevent hazardous consequences.

In this chapter, we explored the differences between machine learning software and traditional software while focusing on how to design software that can contain both parts. We also showed that there is much more to machine learning software than just training, testing, and evaluating the model – we showed that rigorous testing makes sense and is necessary for deploying reliable software.

Now, it is time to move on to the next chapter, where we’ll open up the black box of machine learning software and explore what we need to develop a complete machine learning software product – starting from data acquisition and ending with user interaction.

You have been reading a chapter from
Machine Learning Infrastructure and Best Practices for Software Engineers
Published in: Jan 2024
Publisher: Packt
ISBN-13: 9781837634064
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image