Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Linux Device Drivers Development

You're reading from   Linux Device Drivers Development Develop customized drivers for embedded Linux

Arrow left icon
Product type Paperback
Published in Oct 2017
Publisher Packt
ISBN-13 9781785280009
Length 586 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
John Madieu John Madieu
Author Profile Icon John Madieu
John Madieu
Arrow right icon
View More author details
Toc

Table of Contents (23) Chapters Close

Preface 1. Introduction to Kernel Development FREE CHAPTER 2. Device Driver Basis 3. Kernel Facilities and Helper Functions 4. Character Device Drivers 5. Platform Device Drivers 6. The Concept of Device Tree 7. I2C Client Drivers 8. SPI Device Drivers 9. Regmap API – A Register Map Abstraction 10. IIO Framework 11. Kernel Memory Management 12. DMA – Direct Memory Access 13. The Linux Device Model 14. Pin Control and GPIO Subsystem 15. GPIO Controller Drivers – gpio_chip 16. Advanced IRQ Management 17. Input Devices Drivers 18. RTC Drivers 19. PWM Drivers 20. Regulator Framework 21. Framebuffer Drivers 22. Network Interface Card Drivers

DMA – Direct Memory Access

DMA is a feature of computer systems that allows devices to access the main system memory RAM without CPU intervention, which then allows them to devote themselves to other tasks. One typically uses it for accelerating network traffic, but it supports any kind of copy.

The DMA controller is the peripheral responsible for DMA management. One mostly finds it in modern processors and microcontrollers. DMA is a feature used to perform memory read and write operations without stealing CPU cycles. When one needs to transfer a block of data, the processor feeds the DMA controller with the source and destination addresses and the total number of bytes. The DMA controller then transfers the data from the source to the destination automatically, without stealing CPU cycles. When the number of bytes remaining reaches zero, the block transfer ends.

In this...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at ₹800/month. Cancel anytime