Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Learn Robotics Programming

You're reading from   Learn Robotics Programming Build and control autonomous robots using Raspberry Pi 3 and Python

Arrow left icon
Product type Paperback
Published in Nov 2018
Publisher Packt
ISBN-13 9781789340747
Length 472 pages
Edition 1st Edition
Languages
Concepts
Arrow right icon
Author (1):
Arrow left icon
Danny Staple Danny Staple
Author Profile Icon Danny Staple
Danny Staple
Arrow right icon
View More author details
Toc

Table of Contents (21) Chapters Close

Preface 1. Introduction to Robotics FREE CHAPTER 2. Exploring Robot Building Blocks - Code and Electronics 3. Introducing the Raspberry Pi - Starting with Raspbian 4. Preparing a Raspberry Pi for a Robot - Headless by Default 5. Backing Up the Code with Git and SD Card Copies 6. Building Robot Basics - Wheels, Power, and Wiring 7. Drive and Turn - Moving Motors with Python 8. Programming Line-Following Sensors Using Python 9. Programming RGB Strips in Python 10. Using Python to Control Servo Motors 11. Programming Distance Sensors with Python 12. Programming Encoders with Python 13. Robot Vision - Using a Pi Camera and OpenCV 14. Voice Communication with a Robot Using Mycroft 15. Programming a Gamepad on Raspberry Pi with Python 16. Taking Your Robot Programming Skills Further 17. Planning Your Next Robot Project - Putting It All Together 18. Assessments 19. Other Books You May Enjoy Appendix

Driving a specific distance

For this behavior, we'll use the PI Controller again, and incorporate the distance measurements into our encoder object. We will calculate how many ticks we want the left wheel to have turned for a given distance, and then use this instead of a timeout component.

Refactoring unit conversions into the EncoderCounter class

We'll want the conversions for our encoders in the the EncoderCounter class so that we can use them in these behaviors. Open up your encoder_counter.py class. First, we need the math import:

from gpiozero import DigitalInputDevice
import math
...

At the top of the class, add ticks_to_mm_const as a class variable (not an instance variable) so that we can use it without any...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image