Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Learn Python Programming, 3rd edition

You're reading from   Learn Python Programming, 3rd edition An in-depth introduction to the fundamentals of Python

Arrow left icon
Product type Paperback
Published in Oct 2021
Publisher Packt
ISBN-13 9781801815093
Length 554 pages
Edition 3rd Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Heinrich Kruger Heinrich Kruger
Author Profile Icon Heinrich Kruger
Heinrich Kruger
Fabrizio Romano Fabrizio Romano
Author Profile Icon Fabrizio Romano
Fabrizio Romano
Arrow right icon
View More author details
Toc

Table of Contents (18) Chapters Close

Preface 1. A Gentle Introduction to Python 2. Built-In Data Types FREE CHAPTER 3. Conditionals and Iteration 4. Functions, the Building Blocks of Code 5. Comprehensions and Generators 6. OOP, Decorators, and Iterators 7. Exceptions and Context Managers 8. Files and Data Persistence 9. Cryptography and Tokens 10. Testing 11. Debugging and Profiling 12. GUIs and Scripting 13. Data Science in Brief 14. Introduction to API Development 15. Packaging Python Applications 16. Other Books You May Enjoy
17. Index

Generators

Generators are very powerful tools. They are based on the concept of iteration, as we said before, and they allow for coding patterns that combine elegance with efficiency.

Generators are of two types:

  • Generator functions: These are very similar to regular functions, but instead of returning results through return statements, they use yield, which allows them to suspend and resume their state between each call.
  • Generator expressions: These are very similar to the list comprehensions we've seen in this chapter, but instead of returning a list, they return an object that produces results one by one.

Generator functions

Generator functions behave like regular functions in all respects, except for one difference: instead of collecting results and returning them at once, they are automatically turned into iterators that yield results one at a time when you call next on them. Generator functions are automatically turned into their own...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image