Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
IPython Interactive Computing and Visualization Cookbook

You're reading from   IPython Interactive Computing and Visualization Cookbook Harness IPython for powerful scientific computing and Python data visualization with this collection of more than 100 practical data science recipes

Arrow left icon
Product type Paperback
Published in Sep 2014
Publisher
ISBN-13 9781783284818
Length 512 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Cyrille Rossant Cyrille Rossant
Author Profile Icon Cyrille Rossant
Cyrille Rossant
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. A Tour of Interactive Computing with IPython FREE CHAPTER 2. Best Practices in Interactive Computing 3. Mastering the Notebook 4. Profiling and Optimization 5. High-performance Computing 6. Advanced Visualization 7. Statistical Data Analysis 8. Machine Learning 9. Numerical Optimization 10. Signal Processing 11. Image and Audio Processing 12. Deterministic Dynamical Systems 13. Stochastic Dynamical Systems 14. Graphs, Geometry, and Geographic Information Systems 15. Symbolic and Numerical Mathematics Index

Finding the equilibrium state of a physical system by minimizing its potential energy

In this recipe, we will give an application example of the function minimization algorithms described earlier. We will try to numerically find the equilibrium state of a physical system by minimizing its potential energy.

More specifically, we'll consider a structure made of masses and springs, attached to a vertical wall and subject to gravity. Starting from an initial position, we'll search for the equilibrium configuration where the gravity and elastic forces compensate.

How to do it…

  1. Let's import NumPy, SciPy, and matplotlib:
    In [1]: import numpy as np
            import scipy.optimize as opt
            import matplotlib.pyplot as plt
            %matplotlib inline
  2. We define a few constants in the International System of Units:
    In [2]: g = 9.81  # gravity of Earth
            m = .1  # mass, in kg
            n = 20  # number of masses
            e = .1  # initial distance between the masses
            l =...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at ₹800/month. Cancel anytime