The following code can be used to carry out inference on the unlabeled test data:
import keras
import numpy as np
import pandas as pd
import cv2
import os
import time
from sklearn.externals import joblib
import argparse
# Read the Image and resize to the suitable dimension size
def get_im_cv2(path,dim=224):
img = cv2.imread(path)
resized = cv2.resize(img, (dim,dim), cv2.INTER_LINEAR)
return resized
# Pre Process the Images based on the ImageNet pre-trained model Image transformation
def pre_process(img):
img[:,:,0] = img[:,:,0] - 103.939
img[:,:,1] = img[:,:,0] - 116.779
img[:,:,2] = img[:,:,0] - 123.68
return img
# Function to build test input data
def read_data_test(path,dim):
test_X = []
test_files = []
file_list = os.listdir(path)
for f in file_list:
img = get_im_cv2(path + '/' + f)
img = pre_process...