Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On Image Generation with TensorFlow

You're reading from   Hands-On Image Generation with TensorFlow A practical guide to generating images and videos using deep learning

Arrow left icon
Product type Paperback
Published in Dec 2020
Publisher Packt
ISBN-13 9781838826789
Length 306 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Soon Yau Cheong Soon Yau Cheong
Author Profile Icon Soon Yau Cheong
Soon Yau Cheong
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. Section 1: Fundamentals of Image Generation with TensorFlow
2. Chapter 1: Getting Started with Image Generation Using TensorFlow FREE CHAPTER 3. Chapter 2: Variational Autoencoder 4. Chapter 3: Generative Adversarial Network 5. Section 2: Applications of Deep Generative Models
6. Chapter 4: Image-to-Image Translation 7. Chapter 5: Style Transfer 8. Chapter 6: AI Painter 9. Section 3: Advanced Deep Generative Techniques
10. Chapter 7: High Fidelity Face Generation 11. Chapter 8: Self-Attention for Image Generation 12. Chapter 9: Video Synthesis 13. Chapter 10: Road Ahead 14. Other Books You May Enjoy

Summary

We started this chapter by learning how to use an encoder to compress high-dimensional data into low-dimensional latent variables, then use a decoder to reconstruct the data from the latent variables. We learned that the autoencoder's limitation is not being able to guarantee a continuous and uniform latent space, which makes it difficult to sample from. Then we incorporated Gaussian sampling to build a VAE to generate MNIST digits.

Finally, we built a bigger VAE to train on the face dataset and had fun creating and manipulating faces. We learned the importance of the sampling distribution in the latent space, latent space arithmetic, and KLD, which lay the foundation for Chapter 3, Generative Adversarial Network.

Although GANs are more powerful than VAEs in generating photorealistic images, the earlier GANs were difficult to train. Therefore, we will learn about the fundamentals of GANs. By the end of the next chapter, you will have learned the fundamentals of...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at ₹800/month. Cancel anytime