Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On Data Preprocessing in Python

You're reading from   Hands-On Data Preprocessing in Python Learn how to effectively prepare data for successful data analytics

Arrow left icon
Product type Paperback
Published in Jan 2022
Publisher Packt
ISBN-13 9781801072137
Length 602 pages
Edition 1st Edition
Languages
Concepts
Arrow right icon
Author (1):
Arrow left icon
Roy Jafari Roy Jafari
Author Profile Icon Roy Jafari
Roy Jafari
Arrow right icon
View More author details
Toc

Table of Contents (24) Chapters Close

Preface 1. Part 1:Technical Needs
2. Chapter 1: Review of the Core Modules of NumPy and Pandas FREE CHAPTER 3. Chapter 2: Review of Another Core Module – Matplotlib 4. Chapter 3: Data – What Is It Really? 5. Chapter 4: Databases 6. Part 2: Analytic Goals
7. Chapter 5: Data Visualization 8. Chapter 6: Prediction 9. Chapter 7: Classification 10. Chapter 8: Clustering Analysis 11. Part 3: The Preprocessing
12. Chapter 9: Data Cleaning Level I – Cleaning Up the Table 13. Chapter 10: Data Cleaning Level II – Unpacking, Restructuring, and Reformulating the Table 14. Chapter 11: Data Cleaning Level III – Missing Values, Outliers, and Errors 15. Chapter 12: Data Fusion and Data Integration 16. Chapter 13: Data Reduction 17. Chapter 14: Data Transformation and Massaging 18. Part 4: Case Studies
19. Chapter 15: Case Study 1 – Mental Health in Tech 20. Chapter 16: Case Study 2 – Predicting COVID-19 Hospitalizations 21. Chapter 17: Case Study 3: United States Counties Clustering Analysis 22. Chapter 18: Summary, Practice Case Studies, and Conclusions 23. Other Books You May Enjoy

Integrating the data sources

As discussed, five different datasets need to be integrated. After having seen these five datasets that collected data of OSMI mental health in tech surveys across five different years, you will realize that the survey throughout the years has undergone many changes. Also, while the collected datasets are about mental health in tech, the wordings of the questions and sometimes the nature of these questions have changed. Therefore, the figurative funnel in the following figure serves two purposes. First, it lets the parts of the data from each dataset come through that are common among all six datasets. Second, the funnel also filters out the data that is not relevant to our AQs:

Figure 15.2 – The schematic of the integration of five datasets into one

While the preceding figure makes the integration of these five datasets seem simple, there are meaningful challenges ahead of us. The very first one is knowing what the common...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image