In this chapter, we looked at working with data at scale. Working with large datasets requires a paradigm shift in how the data is processed. Traditional methods that work with smaller datasets generally don't work well with large datasets, because these are designed to work on a single computer. These methods need to be re-engineered to work effectively with large datasets. For scalability, we need to turn to distributed computing; however, this introduces significant additional complexity because of the network being involved, where failures are more common. Using good, time-tested frameworks, such as Apache Spark, is the key to addressing these concerns.
United States
United Kingdom
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Argentina
Austria
Belgium
Bulgaria
Chile
Colombia
Cyprus
Czechia
Denmark
Ecuador
Egypt
Estonia
Finland
Greece
Hungary
Indonesia
Ireland
Italy
Japan
Latvia
Lithuania
Luxembourg
Malaysia
Malta
Mexico
Netherlands
New Zealand
Norway
Philippines
Poland
Portugal
Romania
Singapore
Slovakia
Slovenia
South Africa
South Korea
Sweden
Switzerland
Taiwan
Thailand
Turkey
Ukraine