Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On Data Analysis with Pandas

You're reading from   Hands-On Data Analysis with Pandas Efficiently perform data collection, wrangling, analysis, and visualization using Python

Arrow left icon
Product type Paperback
Published in Jul 2019
Publisher
ISBN-13 9781789615326
Length 740 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Stefanie Molin Stefanie Molin
Author Profile Icon Stefanie Molin
Stefanie Molin
Arrow right icon
View More author details
Toc

Table of Contents (21) Chapters Close

Preface 1. Section 1: Getting Started with Pandas
2. Introduction to Data Analysis FREE CHAPTER 3. Working with Pandas DataFrames 4. Section 2: Using Pandas for Data Analysis
5. Data Wrangling with Pandas 6. Aggregating Pandas DataFrames 7. Visualizing Data with Pandas and Matplotlib 8. Plotting with Seaborn and Customization Techniques 9. Section 3: Applications - Real-World Analyses Using Pandas
10. Financial Analysis - Bitcoin and the Stock Market 11. Rule-Based Anomaly Detection 12. Section 4: Introduction to Machine Learning with Scikit-Learn
13. Getting Started with Machine Learning in Python 14. Making Better Predictions - Optimizing Models 15. Machine Learning Anomaly Detection 16. Section 5: Additional Resources
17. The Road Ahead 18. Solutions
19. Other Books You May Enjoy Appendix

Exercises

Use the stock_analysis package to complete the following exercises. Unless otherwise noted, use data from 2017 through to the end of 2018:

  1. Using the StockAnalyzer, calculate and plot three levels of support and resistance for Netflix's closing price from 2017-2018.
  2. With the StockVisualizer, look at the effect of after-hours trading on the FAANG stocks:
    • As individual stocks
    • As a portfolio using the make_portfolio() function from stock_analysis.utils
  3. Using the StockVisualizer.open_to_close() method, create a plot that fills the area between the FAANG stocks' opening price (as a portfolio) and its closing price each day in red if the price declined and in green if the price increased. As a bonus, do the same for a portfolio of bitcoin and the S&P 500.
  1. Mutual funds and exchange-traded funds (ETFs) are funds that are composed of many assets. They are built...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at ₹800/month. Cancel anytime