Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
fastText Quick Start Guide

You're reading from   fastText Quick Start Guide Get started with Facebook's library for text representation and classification

Arrow left icon
Product type Paperback
Published in Jul 2018
Publisher Packt
ISBN-13 9781789130997
Length 194 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Joydeep Bhattacharjee Joydeep Bhattacharjee
Author Profile Icon Joydeep Bhattacharjee
Joydeep Bhattacharjee
Arrow right icon
View More author details
Toc

Summary

In this chapter, we took a look at how to integrate fastText word vectors into either linear machine learning models or deep learning models created in Keras, TensorFlow, and PyTorch. You also saw how word vectors can be easily assimilated into existing neural architectures that you might be using in your business application. If you are initializing the embeddings from random values, I would highly recommend that you try to initialize them using fastText values, and then see whether there are performance improvements in your model.

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at ₹800/month. Cancel anytime