Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Essential Statistics for Non-STEM Data Analysts

You're reading from   Essential Statistics for Non-STEM Data Analysts Get to grips with the statistics and math knowledge needed to enter the world of data science with Python

Arrow left icon
Product type Paperback
Published in Nov 2020
Publisher Packt
ISBN-13 9781838984847
Length 392 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Rongpeng Li Rongpeng Li
Author Profile Icon Rongpeng Li
Rongpeng Li
Arrow right icon
View More author details
Toc

Table of Contents (19) Chapters Close

Preface 1. Section 1: Getting Started with Statistics for Data Science
2. Chapter 1: Fundamentals of Data Collection, Cleaning, and Preprocessing FREE CHAPTER 3. Chapter 2: Essential Statistics for Data Assessment 4. Chapter 3: Visualization with Statistical Graphs 5. Section 2: Essentials of Statistical Analysis
6. Chapter 4: Sampling and Inferential Statistics 7. Chapter 5: Common Probability Distributions 8. Chapter 6: Parametric Estimation 9. Chapter 7: Statistical Hypothesis Testing 10. Section 3: Statistics for Machine Learning
11. Chapter 8: Statistics for Regression 12. Chapter 9: Statistics for Classification 13. Chapter 10: Statistics for Tree-Based Methods 14. Chapter 11: Statistics for Ensemble Methods 15. Section 4: Appendix
16. Chapter 12: A Collection of Best Practices 17. Chapter 13: Exercises and Projects 18. Other Books You May Enjoy

Using the method of moments to estimate parameters

The method of moments associates moments with the estimand. What is a moment?

A moment is a special statistic of a distribution. The most commonly used moment is the nth moment of a real-valued continuous function. Let's use M to denote the moment, and it is defined as follows, where the order of the moment is reflected as the value of the exponent:

This is said to be the moment about the value c. Often, we set c to be 0:

Some results are immediately available – for example, because the integration of a valid Probability Density Function (PDF) always gives 1. Therefore, we have M0 = 1.

Also, M1 is the expectation value, therefore the mean.

A note on central moments

For high-order moments where c is often set to be the mean, these moments are called central moments. In this setting, the second moment, M2, becomes the variance.

Let's understand how these moments are used to estimate parameters...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at ₹800/month. Cancel anytime