Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Deep Learning for Natural Language Processing

You're reading from   Deep Learning for Natural Language Processing Solve your natural language processing problems with smart deep neural networks

Arrow left icon
Product type Paperback
Published in Jun 2019
Publisher
ISBN-13 9781838550295
Length 372 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (4):
Arrow left icon
Karthiek Reddy Bokka Karthiek Reddy Bokka
Author Profile Icon Karthiek Reddy Bokka
Karthiek Reddy Bokka
Monicah Wambugu Monicah Wambugu
Author Profile Icon Monicah Wambugu
Monicah Wambugu
Tanuj Jain Tanuj Jain
Author Profile Icon Tanuj Jain
Tanuj Jain
Shubhangi Hora Shubhangi Hora
Author Profile Icon Shubhangi Hora
Shubhangi Hora
Arrow right icon
View More author details
Toc

Table of Contents (11) Chapters Close

About the Book 1. Introduction to Natural Language Processing FREE CHAPTER 2. Applications of Natural Language Processing 3. Introduction to Neural Networks 4. Foundations of Convolutional Neural Network 5. Recurrent Neural Networks 6. Gated Recurrent Units (GRUs) 7. Long Short-Term Memory (LSTM) 8. State-of-the-Art Natural Language Processing 9. A Practical NLP Project Workflow in an Organization 1. Appendix

Chapter 2: Applications of Natural Language Processing

Activity 2: Building and training your own POS tagger

Solution:

  1. The first thing to do is pick a corpus that we want to train our tagger on. Import the necessary Python packages. Here, we use the nltk treebank corpus to work on:

    import nltk

    nltk.download('treebank')

    tagged_sentences = nltk.corpus.treebank.tagged_sents()

    print(tagged_sentences[0])

    print("Tagged sentences: ", len(tagged_sentences))

    print ("Tagged words:", len(nltk.corpus.treebank.tagged_words()))

  2. Next, we need to determine what features our tagger will take into consideration when determining what tag to assign to a word. These can include whether the word is all capitalized, is in lowercase, or has one capital letter:

    def features(sentence, index):

    """ sentence: [w1, w2, ...], index: the index of the word """

    return {

    'word': sentence[index],

    'is_first': index == 0,

    'is_last': index == len(sentence) - 1,

    'is_capitalized': sentence[index][0].upper() == sentence[index][0],

    'is_all_caps': sentence[index].upper() == sentence[index],

    'is_all_lower': sentence[index].lower() == sentence[index],

    'prefix-1': sentence[index][0],

    'prefix-2': sentence[index][:2],

    'prefix-3': sentence[index][:3],

    'suffix-1': sentence[index][-1],

    'suffix-2': sentence[index][-2:],

    'suffix-3': sentence[index][-3:],

    'prev_word': '' if index == 0 else sentence[index - 1],

    'next_word': '' if index == len(sentence) - 1 else sentence[index + 1],

    'has_hyphen': '-' in sentence[index],

    'is_numeric': sentence[index].isdigit(),

    'capitals_inside': sentence[index][1:].lower() != sentence[index][1:]

    }

    import pprint

    pprint.pprint(features(['This', 'is', 'a', 'sentence'], 2))

    {'capitals_inside': False,

    'has_hyphen': False,

    'is_all_caps': False,

    'is_all_lower': True,

    'is_capitalized': False,

    'is_first': False,

    'is_last': False,

    'is_numeric': False,

    'next_word': 'sentence',

    'prefix-1': 'a',

    'prefix-2': 'a',

    'prefix-3': 'a',

    'prev_word': 'is',

    'suffix-1': 'a',

    'suffix-2': 'a',

    'suffix-3': 'a',

    'word': 'a'}

  3. Create a function to strip the tagged words of their tags so that we can feed them into our tagger:

    def untag(tagged_sentence):

    return [w for w, t in tagged_sentence]

  4. Now we need to build our training set. Our tagger needs to take features individually for each word, but our corpus is actually in the form of sentences, so we need to do a little transforming. Split the data into training and testing sets. Apply this function on the training set.

    # Split the dataset for training and testing

    cutoff = int(.75 * len(tagged_sentences))

    training_sentences = tagged_sentences[:cutoff]

    test_sentences = tagged_sentences[cutoff:]

    print(len(training_sentences)) # 2935

    print(len(test_sentences)) # 979

    and create a function to assign the features to 'X' and append the POS tags to 'Y'.

    def transform_to_dataset(tagged_sentences):

    X, y = [], []

    for tagged in tagged_sentences:

    for index in range(len(tagged)):

    X.append(features(untag(tagged), index))

    y.append(tagged[index][1])

    return X, y

    X, y = transform_to_dataset(training_sentences)

    from sklearn.tree import DecisionTreeClassifier

    from sklearn.feature_extraction import DictVectorizer

    from sklearn.pipeline import Pipeline

  5. Apply this function on the training set. Now we can train our tagger. It's basically a classifier since it's categorizing words into classes, so we can use a classification algorithm. You can use any that you like or try out a bunch of them to see which works best. Here, we'll use the decision tree classifier. Import the classifier, initialize it, and fit the model on the training data. Print the accuracy score.

    clf = Pipeline([

    ('vectorizer', DictVectorizer(sparse=False)),

    ('classifier', DecisionTreeClassifier(criterion='entropy'))

    ])

    clf.fit(X[:10000], y[:10000]) # Use only the first 10K samples if you're running it multiple times. It takes a fair bit :)

    print('Training completed')

    X_test, y_test = transform_to_dataset(test_sentences)

    print("Accuracy:", clf.score(X_test, y_test))

    The output is as follows:

Figure 2.19: Accuracy score

Activity 3: Performing NER on a Tagged Corpus

Solution:

  1. Import the necessary Python packages and classes.

    import nltk

    nltk.download('treebank')

    nltk.download('maxent_ne_chunker')

    nltk.download('words')

  2. Print the nltk.corpus.treebank.tagged_sents() to see the tagged corpus that you need extract named entities from.

    nltk.corpus.treebank.tagged_sents()

    sent = nltk.corpus.treebank.tagged_sents()[0]

    print(nltk.ne_chunk(sent, binary=True))

  3. Store the first sentence of the tagged sentences in a variable.

    sent = nltk.corpus.treebank.tagged_sents()[1]

  4. Use nltk.ne_chunk to perform NER on the sentence. Set binary to True and print the named entities.

    print(nltk.ne_chunk(sent, binary=False))

    sent = nltk.corpus.treebank.tagged_sents()[2]

    rint(nltk.ne_chunk(sent))

    The output is as follows:

Figure 2.20: NER on tagged corpus
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image