Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Data Science Projects with Python

You're reading from   Data Science Projects with Python A case study approach to successful data science projects using Python, pandas, and scikit-learn

Arrow left icon
Product type Paperback
Published in Apr 2019
Publisher Packt
ISBN-13 9781838551025
Length 374 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Stephen Klosterman Stephen Klosterman
Author Profile Icon Stephen Klosterman
Stephen Klosterman
Arrow right icon
View More author details
Toc

Table of Contents (9) Chapters Close

Data Science Projects with Python
Preface
1. Data Exploration and Cleaning FREE CHAPTER 2. Introduction toScikit-Learn and Model Evaluation 3. Details of Logistic Regression and Feature Exploration 4. The Bias-Variance Trade-off 5. Decision Trees and Random Forests 6. Imputation of Missing Data, Financial Analysis, and Delivery to Client Appendix

Introduction


In the previous chapter, we introduced decision trees and random forests and saw how they could be used to improve the quality of predictive modeling of the case study data.

In this chapter, we consider model building to be complete and address all the remaining issues that need attention before delivering the model to the client. The two key elements of this chapter are data imputation and financial analysis.

With data imputation, you will explore several strategies for making educated guesses of the missing values of features of the dataset. This should enable you to make predictions for all samples.

In the financial analysis, you will take the final yet crucial steps of understanding how a model can be used in the real world. Your client will likely appreciate the efforts you made in creating a more accurate model or one with higher ROC AUC. However, they will definitely appreciate understanding how much money the model can help them earn or save and will be happy to receive...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image