Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Data Lake for Enterprises

You're reading from   Data Lake for Enterprises Lambda Architecture for building enterprise data systems

Arrow left icon
Product type Paperback
Published in May 2017
Publisher Packt
ISBN-13 9781787281349
Length 596 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (3):
Arrow left icon
Pankaj Misra Pankaj Misra
Author Profile Icon Pankaj Misra
Pankaj Misra
Tomcy John Tomcy John
Author Profile Icon Tomcy John
Tomcy John
Vivek Mishra Vivek Mishra
Author Profile Icon Vivek Mishra
Vivek Mishra
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Introduction to Data FREE CHAPTER 2. Comprehensive Concepts of a Data Lake 3. Lambda Architecture as a Pattern for Data Lake 4. Applied Lambda for Data Lake 5. Data Acquisition of Batch Data using Apache Sqoop 6. Data Acquisition of Stream Data using Apache Flume 7. Messaging Layer using Apache Kafka 8. Data Processing using Apache Flink 9. Data Store Using Apache Hadoop 10. Indexed Data Store using Elasticsearch 11. Data Lake Components Working Together 12. Data Lake Use Case Suggestions

When to use Sqoop


Apache Sqoop could be employed for many of the data transfer requirements in a data lake, which has HDFS as the main data storage for incoming data from various systems. These bullet points give some of the cases where Apache Sqoop makes more sense:

  • For regular batch and micro-batch to transfer data to and from RDBMS to Hadoop (HDFS/Hive/HBase), use Apache Sqoop. Apache Sqoop is one of the main and widely used technologies in the data acquisition layer.
  • For transferring data from NoSQL data stores like MongoDB and Cassandra into the Hadoop filesystem.
  • Enterprises having good amounts of applications whose stores are based on RDBMS, Sqoop is the best option to transfer data into a Data Lake.
  • Hadoop is a de-facto standard for storing massive data. Sqoop allows you to transfer data easily into HDFS from a traditional database with ease.
  • Use Sqoop when performance is required, as it is able to split and parallelize data transfer.
  • Sqoop has a concept of connectors and, if your enterprise...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image