Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Clojure for Data Science

You're reading from   Clojure for Data Science Statistics, big data, and machine learning for Clojure programmers

Arrow left icon
Product type Paperback
Published in Sep 2015
Publisher
ISBN-13 9781784397180
Length 608 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Henry Garner Henry Garner
Author Profile Icon Henry Garner
Henry Garner
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Statistics FREE CHAPTER 2. Inference 3. Correlation 4. Classification 5. Big Data 6. Clustering 7. Recommender Systems 8. Network Analysis 9. Time Series 10. Visualization Index

Distributed graph computation with GraphX

GraphX (https://spark.apache.org/graphx/) is a distributed graph processing library that is designed to work with Spark. Like the MLlib library we used in the previous chapter, GraphX provides a set of abstractions that are built on top of Spark's RDDs. By representing the vertices and edges of a graph as RDDs, GraphX is able to process very large graphs in a scalable way.

We've seen in previous chapters how to process a large dataset using MapReduce and Hadoop. Hadoop is an example of a data-parallel system: the dataset is divided into groups that are processed in parallel. Spark is also a data-parallel system: RDDs are distributed across the cluster and processed in parallel.

Distributed graph computation with GraphX

Data-parallel systems are appropriate ways of scaling data processing when your data closely resembles a table. Graphs, which may have complex internal structure, are not most efficiently represented as tables. Although graphs can be represented as edge lists, as...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image