Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Clojure Data Analysis Cookbook - Second Edition

You're reading from   Clojure Data Analysis Cookbook - Second Edition Dive into data analysis with Clojure through over 100 practical recipes for every stage of the analysis and collection process

Arrow left icon
Product type Paperback
Published in Jan 2015
Publisher
ISBN-13 9781784390297
Length 372 pages
Edition 2nd Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Eric Richard Rochester Eric Richard Rochester
Author Profile Icon Eric Richard Rochester
Eric Richard Rochester
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface 1. Importing Data for Analysis FREE CHAPTER 2. Cleaning and Validating Data 3. Managing Complexity with Concurrent Programming 4. Improving Performance with Parallel Programming 5. Distributed Data Processing with Cascalog 6. Working with Incanter Datasets 7. Statistical Data Analysis with Incanter 8. Working with Mathematica and R 9. Clustering, Classifying, and Working with Weka 10. Working with Unstructured and Textual Data 11. Graphing in Incanter 12. Creating Charts for the Web Index

Partitioning Monte Carlo simulations for better pmap performance


In the Parallelizing processing with pmap recipe we found that while using pmap is easy enough, knowing when to use it is more complicated. Processing each task in the collection has to take enough time to make the costs of threading, coordinating processing, and communicating the data worth it. Otherwise, the program will spend more time with how the parallelization is done and not enough time with what the task is.

A way to get around this is to make sure that pmap has enough to do at each step it parallelizes. The easiest way to do this is to partition the input collection into chunks and run pmap on groups of the input.

For this recipe, we'll use Monte Carlo methods to approximate pi. We'll compare a serial version against a naïve parallel version as well as a version that uses parallelization and partitions.

Monte Carlo methods work by attacking a deterministic problem, such as computing pi, nondeterministically. That is...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at ₹800/month. Cancel anytime