Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
C++ Reactive Programming

You're reading from   C++ Reactive Programming Design concurrent and asynchronous applications using the RxCpp library and Modern C++17

Arrow left icon
Product type Paperback
Published in Jun 2018
Publisher Packt
ISBN-13 9781788629775
Length 348 pages
Edition 1st Edition
Languages
Tools
Concepts
Arrow right icon
Authors (2):
Arrow left icon
Peter Abraham Peter Abraham
Author Profile Icon Peter Abraham
Peter Abraham
Praseed Pai Praseed Pai
Author Profile Icon Praseed Pai
Praseed Pai
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. Reactive Programming Model – Overview and History FREE CHAPTER 2. A Tour of Modern C++ and its Key Idioms 3. Language-Level Concurrency and Parallelism in C++ 4. Asynchronous and Lock-Free Programming in C++ 5. Introduction to Observables 6. Introduction to Event Stream Programming Using C++ 7. Introduction to Data Flow Computation and the RxCpp Library 8. RxCpp – the Key Elements 9. Reactive GUI Programming Using Qt/C++ 10. Creating Custom Operators in RxCpp 11. Design Patterns and Idioms for C++ Rx Programming 12. Reactive Microservices Using C++ 13. Advanced Streams and Handling Errors 14. Other Books You May Enjoy

A thread-safe stack data structure

So far, we have discussed how to launch and manage a thread, and how to synchronize the operations between concurrent threads. But, when it comes to actual systems, the data is represented in the form of data structures, which must be chosen appropriately for the situation to guarantee the performance of the program. In this section, we are going to discuss how to design a concurrent stack using conditional variables and mutexes. The following program is a wrapper to std::stack, which is declared under the library header <stack>, and the stack wrapper will be available with different overloads for pop and push functionalities (this has been done to keep the listing small, and this also demonstrates how we can adapt a sequential data structure to work in a concurrent context):

template <typename T> 
class Stack 
{ 
private: 
    std...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at ₹800/month. Cancel anytime