Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Building Data Science Solutions with Anaconda
Building Data Science Solutions with Anaconda

Building Data Science Solutions with Anaconda: A comprehensive starter guide to building robust and complete models

eBook
₹799 ₹2800.99
Paperback
₹3500.99
Subscription
Free Trial
Renews at ₹800p/m

What do you get with Print?

Product feature icon Instant access to your digital eBook copy whilst your Print order is Shipped
Product feature icon Paperback book shipped to your preferred address
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
Product feature icon AI Assistant (beta) to help accelerate your learning
OR
Modal Close icon
Payment Processing...
tick Completed

Shipping Address

Billing Address

Shipping Methods
Table of content icon View table of contents Preview book icon Preview Book

Building Data Science Solutions with Anaconda

Chapter 1: Understanding the AI/ML landscape

In this opening chapter, we'll give you a little appreciation and context to the why behind AI and machine learning (ML). The only data we have comes from the past, and using that will help us predict the future. We'll take a look at the massive amount of data that is coming into the world today and try to get a sense of the scale of what we have to work with.

The main goal of any type of software or algorithm is to solve business and real-world problems, so we'll also take a look at how the applications take shape. If we use a food analogy, data would be the ingredients, the algorithm would be the chef, and the meal created would be the model. You'll learn about the most commonly used types of models within the broader landscape and how to know what to use.

There are a huge number of tools that you could use as a data scientist, and so we will also touch on how you can use solutions such as those provided by Anaconda to be able to do the actual work you want to and be able to take action as your models grow stale (which they will). By the end of this chapter, you'll have an understanding of the value and landscape of AI and be able to jumpstart any project that you want to build.

AI is the most exciting technology of our age and, throughout this first chapter, these topics will give you the solid foundation that we'll build upon through the rest of the book. These are all key concepts that will be commonplace in your day-to-day journey, and which you'll find to be invaluable in accomplishing what you need to.

In this chapter, we're going to cover the following main topics:

  • Understanding the current state of AI and ML
  • Understanding the massive generation of new data
  • How to create business value with AI
  • Understanding the main types of ML models
  • Dealing with out-of-date models
  • Installing packages with Anaconda

Introducing Artificial Intelligence (AI)

AI is moving fast. It has now become so commonplace that it's become an expectation that systems are intelligent. For example, not too long ago, the technology to compete against a human mind in chess was a groundbreaking piece of AI to be marveled at. Now we don't even give it a second thought. Millions of tactical and strategic calculations a second is now just a simple game that can be found on any computer or played on hundreds of websites.

That seemingly was intelligence… that was artificial. Simple right? With spam blockers, recommendation engines, and the best delivery route, the goalposts keep shifting so much that now, all of what was once thought of as AI is simply now regarded as everyday tools.

What was once considered AI is now just thought of as simply software. It seems that AI just means problems that are still unsolved. As those become normal, day-to-day operations, they can fade away from what we generally think of as AI. This is known as the Larry Tesler Theorem, which states "Artificial intelligence is whatever hasn't been done yet."

For example, if you asked someone what AI is, they would probably talk about autonomous driving, drone delivery, and robots that can perform very complex actions. All of these examples are very much in the realm of unsolved problems, and as (or if) they become solved, they may no longer be thought of as AI as the newer, harder problems take their place.

Before we dive any further, let's make sure we are aligned on a few terms that will be a focal point for the rest of the book.

Defining AI

It's important to call out the fact that there is no universal label as to what AI is, but for the purpose of this book, we will use the following definition:

"Artificial Intelligence (AI) is the development of computer systems to allow them to perform tasks that mimic the intelligence of humans. This can use vision, text, reading comprehension, complex problem solving, labeling, or other forms of input."

Defining a data scientist

Along with the definition of AI, defining what a data scientist is can also lead you to many different descriptions. Know that as with AI, the field of data science can be a very broad category. Josh Wills tweeted that a data scientist is the following:

"A person who is better at statistics than any software engineer and better at software engineering than any statistician."

While there may be some truth to that, we'll use the following definition instead:

"A data scientist is someone who gains insight and knowledge from data by analyzing, applying statistics, and implementing an AI approach in order to be able to answer questions and solve problems."

If you are reading this, then you probably fall into that category. There are many tools that a data scientist needs to be able to utilize to work toward the end goal, and we'll learn about many of those in this book.

Now that we've set a base level of understanding of what AI is, let's take a look at where the state of the world is regarding AI, and also learn about where ML fits into the picture.

Understanding the current state of AI and ML

The past is the only place where we can gather data to make predictions about the future. This is one of the core value propositions of AI and ML, and this is true for the field itself. I'll spare you from too much of the history lesson, but know that the techniques and approaches used today aren't new. In fact, neural networks have been around for over 60 years! Knowing this, keep in mind on your data science journey that a white paper or approach that you deem as old or out of date might just not have reached the right point for technology or data to catch up to it.

These systems allow for much greater scalability, distribution, and speed than if we had humans perform those same tasks. We will dive more into specific problem types later in the chapter.

Currently, one of the most well-known approaches to creating AI is neural networks, in which data scientists drew inspiration from how the human brain works. Neural networks were only a genuinely viable path when two things happened:

  • We made the connection in 2012 that, just like our brain, we could get vastly better results if we created multiple layers.
  • GPUs became fast enough to be able to train models in a reasonable timeframe.

This huge leap in AI techniques would not have been possible if we had not come back to the ideas of the past with fresh eyes and newer hardware.

Before more advanced GPUs were used, it simply took too long to train a model, and so this wasn't practical. Think about an assembly line making a car. If that moved along at one meter a day, that would be an effective end result, but it would take an extremely long time to produce a car (Henry Ford's 1914 assembly line moved at two meters a minute). Similar to 4k (and 8k) TVs being particularly useless until streaming or Blu-ray formats allowed us to have content that could even be shown in 4k, sometimes, other supporting technology needs to improve before the applications can be fully realized.

The massive increase in computational power in the last decade has unlocked the ability for the tensor computations to really shine and has taken us a long way from the Cornell report on The Perceptron (https://bit.ly/perceptron-cornell), the first paper to mention the ideas that would become the neural networks we use today. GPU power has increased at a rate such that the massive number of training runs can be done in hours, not years.

Tensors themselves are a common occurrence in physics and other forms of engineering and are an example of how data science has a heavy influence from other fields and has an especially strong relationship with mathematics. Now they are a staple tool in training deep learning models using neural networks.

Tensors

A tensor is simply a data structure that is commonly used in neural networks, but is a mathematical term. It can refer to matrices, vectors, and any n-dimensional arrays, but is mostly used to describe the latter when it comes to neural networks. It is where TensorFlow, the popular Google library, gets its name.

Deep learning is a technique in the field of AI and, more specifically, ML, but aren't they the same thing? The answer is no. Understanding the difference will help you focus on particular subsets and ensure that you have a clear picture of what is out there. Let's take a more in-depth look next.

Knowing the difference between AI and ML

Machine Learning (ML) is simply a machine being able to infer things based on input data without having to be specifically told what things are. It learns and deduces patterns and tries its best to fit new data into that pattern. ML is, in fact, a subset of the larger AI field, and since both terms are so widely used, it's valuable to get some brief examples of different types of AI and how the subsets fit into the broader term.

Let's look at a simple Venn diagram that shows the relationship between AI, ML, and deep learning. You'll see that AI is the broader concept, with ML and deep learning being specific subsets:

Figure 1.1 – Hierarchy of AI, ML, and deep learning

Figure 1.1 – Hierarchy of AI, ML, and deep learning

An example of AI that isn't ML is an expert system. This is a rule-based system that is designed for a very specific case, and in some ways can come down to if-else statements. It is following a hand-coded system behind the scenes, but that can be very powerful. A traffic light that switches to green if there is more than x number of cars in the North/South lane, but fewer than y cars in the East/West lane, would be an example.

These expert systems have been around for a long time, and the chess game was an example of that. The famous Deep Thought from Carnegie Mellon searched about 500 million possible outcomes per move to hunt down the best one. It was enough to put even the best chess players on the ropes. It later gave way to Deep Blue, which started to look like something closer to ML as it used a Bayesian structure to achieve its world conquest.

That's not AI! You might say. In an odd twist… IBM agrees with you, at least in the late 90s, as they actually claimed that it wasn't AI. This was likely due to the term having negative connotations associated with it. However, this mentality has changed in modern times. Many of the early promises of AI have come to fruition, solving many issues we knew we wanted to solve, and creating whole new sectors such as chatbots.

AI can be complex image detection, such as for self-driving, and voice recognition systems, such as Amazon's Alexa, but it can also be a system made up of relatively simple instructions. Think about how many simple tasks you carry out based on incredibly simple patterns. I'm hungry, I should eat. Those clothes are red, those are white, so they belong in different bins. Pretty simple right? The fact is that AI is a massive term that can include much more than what it's given credit for.

Much of what AI has become in the last 10 years is due to the high amount of data that it has access to. In the next section, we'll take a look in a little more detail at what that looks like.

Left arrow icon Right arrow icon
Download code icon Download Code

Key benefits

  • Learn from an AI patent-holding engineering manager with deep experience in Anaconda tools and OSS
  • Get to grips with critical aspects of data science such as bias in datasets and interpretability of models
  • Gain a deeper understanding of the AI/ML landscape through real-world examples and practical analogies

Description

You might already know that there's a wealth of data science and machine learning resources available on the market, but what you might not know is how much is left out by most of these AI resources. This book not only covers everything you need to know about algorithm families but also ensures that you become an expert in everything, from the critical aspects of avoiding bias in data to model interpretability, which have now become must-have skills. In this book, you'll learn how using Anaconda as the easy button, can give you a complete view of the capabilities of tools such as conda, which includes how to specify new channels to pull in any package you want as well as discovering new open source tools at your disposal. You’ll also get a clear picture of how to evaluate which model to train and identify when they have become unusable due to drift. Finally, you’ll learn about the powerful yet simple techniques that you can use to explain how your model works. By the end of this book, you’ll feel confident using conda and Anaconda Navigator to manage dependencies and gain a thorough understanding of the end-to-end data science workflow.

Who is this book for?

If you’re a data analyst or data science professional looking to make the most of Anaconda’s capabilities and deepen your understanding of data science workflows, then this book is for you. You don’t need any prior experience with Anaconda, but a working knowledge of Python and data science basics is a must.

What you will learn

  • Install packages and create virtual environments using conda
  • Understand the landscape of open source software and assess new tools
  • Use scikit-learn to train and evaluate model approaches
  • Detect bias types in your data and what you can do to prevent it
  • Grow your skillset with tools such as NumPy, pandas, and Jupyter Notebooks
  • Solve common dataset issues, such as imbalanced and missing data
  • Use LIME and SHAP to interpret and explain black-box models
Estimated delivery fee Deliver to India

Premium delivery 5 - 8 business days

₹630.95
(Includes tracking information)

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : May 27, 2022
Length: 330 pages
Edition : 1st
Language : English
ISBN-13 : 9781800568785
Category :
Concepts :
Tools :

What do you get with Print?

Product feature icon Instant access to your digital eBook copy whilst your Print order is Shipped
Product feature icon Paperback book shipped to your preferred address
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
Product feature icon AI Assistant (beta) to help accelerate your learning
OR
Modal Close icon
Payment Processing...
tick Completed

Shipping Address

Billing Address

Shipping Methods
Estimated delivery fee Deliver to India

Premium delivery 5 - 8 business days

₹630.95
(Includes tracking information)

Product Details

Publication date : May 27, 2022
Length: 330 pages
Edition : 1st
Language : English
ISBN-13 : 9781800568785
Category :
Concepts :
Tools :

Packt Subscriptions

See our plans and pricing
Modal Close icon
₹800 billed monthly
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
₹4500 billed annually
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just ₹400 each
Feature tick icon Exclusive print discounts
₹5000 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just ₹400 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total 11,470.97
Machine Learning with PyTorch and Scikit-Learn
₹4096.99
Building Data Science Solutions with Anaconda
₹3500.99
The Pandas Workshop
₹3872.99
Total 11,470.97 Stars icon
Banner background image

Table of Contents

15 Chapters
Part 1: The Data Science Landscape – Open Source to the Rescue Chevron down icon Chevron up icon
Chapter 1: Understanding the AI/ML landscape Chevron down icon Chevron up icon
Chapter 2: Analyzing Open Source Software Chevron down icon Chevron up icon
Chapter 3: Using the Anaconda Distribution to Manage Packages Chevron down icon Chevron up icon
Chapter 4: Working with Jupyter Notebooks and NumPy Chevron down icon Chevron up icon
Part 2: Data Is the New Oil, Models Are the New Refineries Chevron down icon Chevron up icon
Chapter 5: Cleaning and Visualizing Data Chevron down icon Chevron up icon
Chapter 6: Overcoming Bias in AI/ML Chevron down icon Chevron up icon
Chapter 7: Choosing the Best AI Algorithm Chevron down icon Chevron up icon
Chapter 8: Dealing with Common Data Problems Chevron down icon Chevron up icon
Part 3: Practical Examples and Applications Chevron down icon Chevron up icon
Chapter 9: Building a Regression Model with scikit-learn Chevron down icon Chevron up icon
Chapter 10: Explainable AI - Using LIME and SHAP Chevron down icon Chevron up icon
Chapter 11: Tuning Hyperparameters and Versioning Your Model Chevron down icon Chevron up icon
Other Books You May Enjoy Chevron down icon Chevron up icon

Customer reviews

Top Reviews
Rating distribution
Full star icon Full star icon Full star icon Full star icon Full star icon 5
(12 Ratings)
5 star 100%
4 star 0%
3 star 0%
2 star 0%
1 star 0%
Filter icon Filter
Top Reviews

Filter reviews by




Paul Burnett Dec 04, 2023
Full star icon Full star icon Full star icon Full star icon Full star icon 5
You books and videos are intelligent and cover key concepts. I tend to bounce around multiple authors on relevant ai themes. I look at the library modules tools and the power of the information your site gives me. 5 star to all you team. It been a pleasure learning with you. Paul burnett Biomedical eng. and data software programmer in ai.
Feefo Verified review Feefo
Yiqiao Yin Jul 28, 2022
Full star icon Full star icon Full star icon Full star icon Full star icon 5
It's great reading this project. I feel like I come from a unique place because I did not come from a place where I find downloading packages and create environments helpful. Hence, this book is really helping me to reshape some of my views. I also found it valuable that this book is able to provide some of the fundamental building block in conda.In conda, I typically create an environment I like and fire up a jupyter lab. Then I do my dev work in there. For me personally, this is a pretty efficient workflow. Hence, it's really a overview for me for the first 6 chapters to review some of these concepts. However, if you are intro level, this book is a great start. It depends on your level really.In addition, as my YouTube suggested. The book goes above and beyond to introduce something on top of machine learning. Coming from statistics background, I really appreciate that the author discusses biases and variances. Moreover, the later chapters discussed shap and lime value which is also something I investigated during my graduate program.Overall, I really enjoyed reading this book and I recommend to all others to read this book too!
Amazon Verified review Amazon
Jerimiah Jun 21, 2022
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Whether you are someone wanting to get started with Data Science, or an experienced practitioner who has been away from the field for a while (like me), this book provides you everything you need to know. Each chapter builds on the last, but they are also relatively independent of each other, so if you need to quickly brush up on a specific subject/method (like versioning your ML models), it's easy to do so. The metaphors used throughout the book are vivid and memorable, to help the reader get a better intuition for complicated concepts. The projects and examples use realistic scenarios that do a great job of walking the reader through the code and steps to building an ML model in the same way they would do them in real life. I'll definitely be keeping this book handy as a reference for when I ever need to work on an ML project in the future!
Amazon Verified review Amazon
Karl Weinmeister Jul 03, 2022
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Dan's book covers an end-to-end path from setting up your environment to building a model. Readers will see how to apply popular open-source packages for data science, in particular pandas and scikit-learn. The book also introduces conceptual topics such as how to select an appropriate ML model type. I would highly recommend this book for emerging data scientists who want to get up-to-speed quickly on common concepts and tools.
Amazon Verified review Amazon
Jamie Vernon May 27, 2022
Full star icon Full star icon Full star icon Full star icon Full star icon 5
The authors really knocked it out of the park with this one. As someone with little experience with AI or Am, this was a great read. Can’t wait to get deeper into the space.. 5 stars all day
Amazon Verified review Amazon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

What is the delivery time and cost of print book? Chevron down icon Chevron up icon

Shipping Details

USA:

'

Economy: Delivery to most addresses in the US within 10-15 business days

Premium: Trackable Delivery to most addresses in the US within 3-8 business days

UK:

Economy: Delivery to most addresses in the U.K. within 7-9 business days.
Shipments are not trackable

Premium: Trackable delivery to most addresses in the U.K. within 3-4 business days!
Add one extra business day for deliveries to Northern Ireland and Scottish Highlands and islands

EU:

Premium: Trackable delivery to most EU destinations within 4-9 business days.

Australia:

Economy: Can deliver to P. O. Boxes and private residences.
Trackable service with delivery to addresses in Australia only.
Delivery time ranges from 7-9 business days for VIC and 8-10 business days for Interstate metro
Delivery time is up to 15 business days for remote areas of WA, NT & QLD.

Premium: Delivery to addresses in Australia only
Trackable delivery to most P. O. Boxes and private residences in Australia within 4-5 days based on the distance to a destination following dispatch.

India:

Premium: Delivery to most Indian addresses within 5-6 business days

Rest of the World:

Premium: Countries in the American continent: Trackable delivery to most countries within 4-7 business days

Asia:

Premium: Delivery to most Asian addresses within 5-9 business days

Disclaimer:
All orders received before 5 PM U.K time would start printing from the next business day. So the estimated delivery times start from the next day as well. Orders received after 5 PM U.K time (in our internal systems) on a business day or anytime on the weekend will begin printing the second to next business day. For example, an order placed at 11 AM today will begin printing tomorrow, whereas an order placed at 9 PM tonight will begin printing the day after tomorrow.


Unfortunately, due to several restrictions, we are unable to ship to the following countries:

  1. Afghanistan
  2. American Samoa
  3. Belarus
  4. Brunei Darussalam
  5. Central African Republic
  6. The Democratic Republic of Congo
  7. Eritrea
  8. Guinea-bissau
  9. Iran
  10. Lebanon
  11. Libiya Arab Jamahriya
  12. Somalia
  13. Sudan
  14. Russian Federation
  15. Syrian Arab Republic
  16. Ukraine
  17. Venezuela
What is custom duty/charge? Chevron down icon Chevron up icon

Customs duty are charges levied on goods when they cross international borders. It is a tax that is imposed on imported goods. These duties are charged by special authorities and bodies created by local governments and are meant to protect local industries, economies, and businesses.

Do I have to pay customs charges for the print book order? Chevron down icon Chevron up icon

The orders shipped to the countries that are listed under EU27 will not bear custom charges. They are paid by Packt as part of the order.

List of EU27 countries: www.gov.uk/eu-eea:

A custom duty or localized taxes may be applicable on the shipment and would be charged by the recipient country outside of the EU27 which should be paid by the customer and these duties are not included in the shipping charges been charged on the order.

How do I know my custom duty charges? Chevron down icon Chevron up icon

The amount of duty payable varies greatly depending on the imported goods, the country of origin and several other factors like the total invoice amount or dimensions like weight, and other such criteria applicable in your country.

For example:

  • If you live in Mexico, and the declared value of your ordered items is over $ 50, for you to receive a package, you will have to pay additional import tax of 19% which will be $ 9.50 to the courier service.
  • Whereas if you live in Turkey, and the declared value of your ordered items is over € 22, for you to receive a package, you will have to pay additional import tax of 18% which will be € 3.96 to the courier service.
How can I cancel my order? Chevron down icon Chevron up icon

Cancellation Policy for Published Printed Books:

You can cancel any order within 1 hour of placing the order. Simply contact customercare@packt.com with your order details or payment transaction id. If your order has already started the shipment process, we will do our best to stop it. However, if it is already on the way to you then when you receive it, you can contact us at customercare@packt.com using the returns and refund process.

Please understand that Packt Publishing cannot provide refunds or cancel any order except for the cases described in our Return Policy (i.e. Packt Publishing agrees to replace your printed book because it arrives damaged or material defect in book), Packt Publishing will not accept returns.

What is your returns and refunds policy? Chevron down icon Chevron up icon

Return Policy:

We want you to be happy with your purchase from Packtpub.com. We will not hassle you with returning print books to us. If the print book you receive from us is incorrect, damaged, doesn't work or is unacceptably late, please contact Customer Relations Team on customercare@packt.com with the order number and issue details as explained below:

  1. If you ordered (eBook, Video or Print Book) incorrectly or accidentally, please contact Customer Relations Team on customercare@packt.com within one hour of placing the order and we will replace/refund you the item cost.
  2. Sadly, if your eBook or Video file is faulty or a fault occurs during the eBook or Video being made available to you, i.e. during download then you should contact Customer Relations Team within 14 days of purchase on customercare@packt.com who will be able to resolve this issue for you.
  3. You will have a choice of replacement or refund of the problem items.(damaged, defective or incorrect)
  4. Once Customer Care Team confirms that you will be refunded, you should receive the refund within 10 to 12 working days.
  5. If you are only requesting a refund of one book from a multiple order, then we will refund you the appropriate single item.
  6. Where the items were shipped under a free shipping offer, there will be no shipping costs to refund.

On the off chance your printed book arrives damaged, with book material defect, contact our Customer Relation Team on customercare@packt.com within 14 days of receipt of the book with appropriate evidence of damage and we will work with you to secure a replacement copy, if necessary. Please note that each printed book you order from us is individually made by Packt's professional book-printing partner which is on a print-on-demand basis.

What tax is charged? Chevron down icon Chevron up icon

Currently, no tax is charged on the purchase of any print book (subject to change based on the laws and regulations). A localized VAT fee is charged only to our European and UK customers on eBooks, Video and subscriptions that they buy. GST is charged to Indian customers for eBooks and video purchases.

What payment methods can I use? Chevron down icon Chevron up icon

You can pay with the following card types:

  1. Visa Debit
  2. Visa Credit
  3. MasterCard
  4. PayPal
What is the delivery time and cost of print books? Chevron down icon Chevron up icon

Shipping Details

USA:

'

Economy: Delivery to most addresses in the US within 10-15 business days

Premium: Trackable Delivery to most addresses in the US within 3-8 business days

UK:

Economy: Delivery to most addresses in the U.K. within 7-9 business days.
Shipments are not trackable

Premium: Trackable delivery to most addresses in the U.K. within 3-4 business days!
Add one extra business day for deliveries to Northern Ireland and Scottish Highlands and islands

EU:

Premium: Trackable delivery to most EU destinations within 4-9 business days.

Australia:

Economy: Can deliver to P. O. Boxes and private residences.
Trackable service with delivery to addresses in Australia only.
Delivery time ranges from 7-9 business days for VIC and 8-10 business days for Interstate metro
Delivery time is up to 15 business days for remote areas of WA, NT & QLD.

Premium: Delivery to addresses in Australia only
Trackable delivery to most P. O. Boxes and private residences in Australia within 4-5 days based on the distance to a destination following dispatch.

India:

Premium: Delivery to most Indian addresses within 5-6 business days

Rest of the World:

Premium: Countries in the American continent: Trackable delivery to most countries within 4-7 business days

Asia:

Premium: Delivery to most Asian addresses within 5-9 business days

Disclaimer:
All orders received before 5 PM U.K time would start printing from the next business day. So the estimated delivery times start from the next day as well. Orders received after 5 PM U.K time (in our internal systems) on a business day or anytime on the weekend will begin printing the second to next business day. For example, an order placed at 11 AM today will begin printing tomorrow, whereas an order placed at 9 PM tonight will begin printing the day after tomorrow.


Unfortunately, due to several restrictions, we are unable to ship to the following countries:

  1. Afghanistan
  2. American Samoa
  3. Belarus
  4. Brunei Darussalam
  5. Central African Republic
  6. The Democratic Republic of Congo
  7. Eritrea
  8. Guinea-bissau
  9. Iran
  10. Lebanon
  11. Libiya Arab Jamahriya
  12. Somalia
  13. Sudan
  14. Russian Federation
  15. Syrian Arab Republic
  16. Ukraine
  17. Venezuela