Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases now! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Building AI Intensive Python Applications

You're reading from   Building AI Intensive Python Applications Create intelligent apps with LLMs and vector databases

Arrow left icon
Product type Paperback
Published in Sep 2024
Publisher Packt
ISBN-13 9781836207252
Length 298 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Toc

Table of Contents (18) Chapters Close

Preface 1. Chapter 1: Getting Started with Generative AI FREE CHAPTER 2. Chapter 2: Building Blocks of Intelligent Applications 3. Part 1: Foundations of AI: LLMs, Embedding Models, Vector Databases, and Application Design
4. Chapter 3: Large Language Models 5. Chapter 4: Embedding Models 6. Chapter 5: Vector Databases 7. Chapter 6: AI/ML Application Design 8. Part 2: Building Your Python Application: Frameworks, Libraries, APIs, and Vector Search
9. Chapter 7: Useful Frameworks, Libraries, and APIs 10. Chapter 8: Implementing Vector Search in AI Applications 11. Part 3: Optimizing AI Applications: Scaling, Fine-Tuning, Troubleshooting, Monitoring, and Analytics
12. Chapter 9: LLM Output Evaluation 13. Chapter 10: Refining the Semantic Data Model to Improve Accuracy 14. Chapter 11: Common Failures of Generative AI 15. Chapter 12: Correcting and Optimizing Your Generative AI Application 16. Other Books You May Enjoy Appendix: Further Reading: Index

Evaluation metrics

To perform evaluations on your AI system, you must combine your evaluation data with an evaluation metric. An evaluation metric takes the input and the output of an AI system and returns a score measuring how the AI system performed for the case.

Evaluation metrics typically return scores between 0 and 1. The metric is called a binary metric if it returns only the scores of 0 or 1. The metric is called a normalized metric if it returns a score between 0 and 1, inclusive. Binary metrics clearly determine if the case passes or fails, 0 being fail and 1 being pass. Normalized metrics present a more nuanced view of how the AI system performs, but that nuance can lack interpretability. To add clarity to normalized metrics, you can set a minimum threshold score that the metric must return to be considered a pass. For example, say the metric Foo returns a score of 0.6 for an evaluation case and 0.7 for another. If you have a threshold of 0.65, then the 0.6 score is considered...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at ₹800/month. Cancel anytime