Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Bayesian Analysis with Python

You're reading from   Bayesian Analysis with Python A practical guide to probabilistic modeling

Arrow left icon
Product type Paperback
Published in Jan 2024
Publisher Packt
ISBN-13 9781805127161
Length 394 pages
Edition 3rd Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Osvaldo Martin Osvaldo Martin
Author Profile Icon Osvaldo Martin
Osvaldo Martin
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface
1. Chapter 1 Thinking Probabilistically FREE CHAPTER 2. Chapter 2 Programming Probabilistically 3. Chapter 3 Hierarchical Models 4. Chapter 4 Modeling with Lines 5. Chapter 5 Comparing Models 6. Chapter 6 Modeling with Bambi 7. Chapter 7 Mixture Models 8. Chapter 8 Gaussian Processes 9. Chapter 9 Bayesian Additive Regression Trees 10. Chapter 10 Inference Engines 11. Chapter 11 Where to Go Next 12. Bibliography
13. Other Books You May Enjoy
14. Index

1.1 Statistics, models, and this book’s approach

Statistics is about collecting, organizing, analyzing, and interpreting data, and hence statistical knowledge is essential for data analysis. Two main statistical methods are used in data analysis:

  • Exploratory Data Analysis (EDA): This is about numerical summaries, such as the mean, mode, standard deviation, and interquartile ranges. EDA is also about visually inspecting the data, using tools you may be already familiar with, such as histograms and scatter plots.

  • Inferential statistics: This is about making statements beyond the current data. We may want to understand some particular phenomenon, maybe we want to make predictions for future (yet unobserved) data points, or we need to choose among several competing explanations for the same set of observations. In summary, inferential statistics allow us to draw meaningful insights from a limited set of data and make informed decisions based on the results of our analysis.

A Match Made in Heaven

The focus of this book is on how to perform Bayesian inferential statistics, but we will also use ideas from EDA to summarize, interpret, check, and communicate the results of Bayesian inference.

Most introductory statistical courses, at least for non-statisticians, are taught as a collection of recipes that go like this: go to the statistical pantry, pick one tin can and open it, add data to taste, and stir until you obtain a consistent p-value, preferably under 0.05. The main goal of these courses is to teach you how to pick the proper can. I never liked this approach, mainly because the most common result is a bunch of confused people unable to grasp, even at the conceptual level, the unity of the different learned methods. We will take a different approach: we will learn some recipes, but they will be homemade rather than canned food; we will learn how to mix fresh ingredients that will suit different statistical occasions and, more importantly, that will let you apply concepts far beyond the examples in this book.

Taking this approach is possible for two reasons:

  • Ontological: Statistics is a form of modeling unified under the mathematical framework of probability theory. Using a probabilistic approach provides a unified view of what may seem like very disparate methods; statistical methods and machine learning methods look much more similar under the probabilistic lens.

  • Technical: Modern software, such as PyMC, allows practitioners, just like you and me, to define and solve models in a relatively easy way. Many of these models were unsolvable just a few years ago or required a high level of mathematical and technical sophistication.

You have been reading a chapter from
Bayesian Analysis with Python - Third Edition
Published in: Jan 2024
Publisher: Packt
ISBN-13: 9781805127161
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image