Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Applied Unsupervised Learning with Python

You're reading from   Applied Unsupervised Learning with Python Discover hidden patterns and relationships in unstructured data with Python

Arrow left icon
Product type Paperback
Published in May 2019
Publisher
ISBN-13 9781789952292
Length 482 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (3):
Arrow left icon
Benjamin Johnston Benjamin Johnston
Author Profile Icon Benjamin Johnston
Benjamin Johnston
Christopher Kruger Christopher Kruger
Author Profile Icon Christopher Kruger
Christopher Kruger
Aaron Jones Aaron Jones
Author Profile Icon Aaron Jones
Aaron Jones
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Applied Unsupervised Learning with Python
Preface
1. Introduction to Clustering 2. Hierarchical Clustering FREE CHAPTER 3. Neighborhood Approaches and DBSCAN 4. Dimension Reduction and PCA 5. Autoencoders 6. t-Distributed Stochastic Neighbor Embedding (t-SNE) 7. Topic Modeling 8. Market Basket Analysis 9. Hotspot Analysis Appendix

Clustering Refresher


Chapter 1, Introduction to Clustering, covered both the high-level intuition and in-depth details of one of the most basic clustering algorithms: k-means. While it is indeed a simple approach, do not discredit it; it will be a valuable addition to your toolkit as you continue your exploration of the unsupervised learning world. In many real-world use cases, companies experience groundbreaking discoveries through the simplest methods, such as k-means or linear regression (for supervised learning). As a refresher, let's quickly walk through what clusters are and how k-means works to find them:

Figure 2.1: The attributes that separate supervised and unsupervised problems

If you were given a random collection of data without any guidance, you would likely start your exploration using basic statistics – for example, what the mean, median, and mode values are of each of the features. Remember that, from a high-level data model that simply exists, knowing whether it is supervised...

You have been reading a chapter from
Applied Unsupervised Learning with Python
Published in: May 2019
Publisher:
ISBN-13: 9781789952292
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at ₹800/month. Cancel anytime