Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Applied Deep Learning on Graphs

You're reading from   Applied Deep Learning on Graphs Leverage graph data for business applications using specialized deep learning architectures

Arrow left icon
Product type Paperback
Published in Dec 2024
Publisher Packt
ISBN-13 9781835885963
Length 250 pages
Edition 1st Edition
Arrow right icon
Authors (2):
Arrow left icon
Lakshya Khandelwal Lakshya Khandelwal
Author Profile Icon Lakshya Khandelwal
Lakshya Khandelwal
Subhajoy Das Subhajoy Das
Author Profile Icon Subhajoy Das
Subhajoy Das
Arrow right icon
View More author details
Toc

Table of Contents (19) Chapters Close

Preface 1. Part 1: Foundations of Graph Learning FREE CHAPTER
2. Chapter 1: Introduction to Graph Learning 3. Chapter 2: Graph Learning in the Real World 4. Chapter 3: Graph Representation Learning 5. Part 2: Advanced Graph Learning Techniques
6. Chapter 4: Deep Learning Models for Graphs 7. Chapter 5: Graph Deep Learning Challenges 8. Chapter 6: Harnessing Large Language Models for Graph Learning 9. Part 3: Practical Applications and Implementation
10. Chapter 7: Graph Deep Learning in Practice 11. Chapter 8: Graph Deep Learning for Natural Language Processing 12. Chapter 9: Building Recommendation Systems Using Graph Deep Learning 13. Chapter 10: Graph Deep Learning for Computer Vision 14. Part 4: Future Directions
15. Chapter 11: Emerging Applications 16. Chapter 12: The Future of Graph Learning 17. Index 18. Other Books You May Enjoy

Decoding GNNs

A GNN is a neural network architecture designed to operate on graph-structured data. It learns a function that maps a graph and its associated features to a set of node-level, edge-level, or graph-level outputs. The following is a formal mathematical definition of a GNN.

Given a graph <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mi>G</mml:mi><mml:mi mathvariant="normal"> </mml:mi><mml:mo>=</mml:mo><mml:mi mathvariant="normal"> </mml:mi><mml:mfenced separators="|"><mml:mrow><mml:mi>V</mml:mi><mml:mo>,</mml:mo><mml:mi mathvariant="normal"> </mml:mi><mml:mi>E</mml:mi></mml:mrow></mml:mfenced></mml:math>, where <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mi>V</mml:mi></mml:math> is the set of nodes and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mi>E</mml:mi></mml:math> is the set of edges, let <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mi>X</mml:mi><mml:mi mathvariant="normal"> </mml:mi><mml:mo>∈</mml:mo><mml:mi mathvariant="normal"> </mml:mi><mml:msup><mml:mrow><mml:mi mathvariant="double-struck">R</mml:mi></mml:mrow><mml:mrow><mml:mfenced open="|" close="|" separators="|"><mml:mrow><mml:mi>V</mml:mi></mml:mrow></mml:mfenced><mml:mo>×</mml:mo><mml:mi>d</mml:mi></mml:mrow></mml:msup></mml:math> be the node feature matrix, where each row <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:msub><mml:mrow><mml:mi>x</mml:mi></mml:mrow><mml:mrow><mml:mi>v</mml:mi></mml:mrow></mml:msub><mml:mo>∈</mml:mo><mml:mi mathvariant="normal"> </mml:mi><mml:msup><mml:mrow><mml:mi mathvariant="double-struck">R</mml:mi></mml:mrow><mml:mrow><mml:mi>d</mml:mi></mml:mrow></mml:msup></mml:math>represents the features of node <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>v</mi><mspace width="0.25em" /><mo>∈</mo><mspace width="0.25em" /><mi>V</mi></mrow></mrow></math>.

A GNN is a function <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:msub><mml:mrow><mml:mi>f</mml:mi></mml:mrow><mml:mrow><mml:mi>θ</mml:mi></mml:mrow></mml:msub><mml:mi mathvariant="normal"> </mml:mi><mml:mo>:</mml:mo><mml:mi mathvariant="normal"> </mml:mi><mml:mi>G</mml:mi><mml:mo>×</mml:mo><mml:msup><mml:mrow><mml:mi mathvariant="double-struck">R</mml:mi></mml:mrow><mml:mrow><mml:mfenced open="|" close="|" separators="|"><mml:mrow><mml:mi>V</mml:mi></mml:mrow></mml:mfenced><mml:mo>×</mml:mo><mml:mi>d</mml:mi></mml:mrow></mml:msup><mml:mo>→</mml:mo><mml:msup><mml:mrow><mml:mi mathvariant="double-struck">R</mml:mi></mml:mrow><mml:mrow><mml:mfenced open="|" close="|" separators="|"><mml:mrow><mml:mi>V</mml:mi></mml:mrow></mml:mfenced><mml:mo>×</mml:mo><mml:msup><mml:mrow><mml:mi>d</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant="normal">'</mml:mi></mml:mrow></mml:msup></mml:mrow></mml:msup></mml:math> parameterized by learnable weights <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mi>θ</mml:mi></mml:math>, which maps the graph <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mi>G</mml:mi></mml:math> and its node features <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mi>X</mml:mi></mml:math> to a new set of node representations <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mi>H</mml:mi><mml:mi mathvariant="normal"> </mml:mi><mml:mo>∈</mml:mo><mml:mi mathvariant="normal"> </mml:mi><mml:msup><mml:mrow><mml:mi mathvariant="double-struck">R</mml:mi></mml:mrow><mml:mrow><mml:mfenced open="|" close="|" separators="|"><mml:mrow><mml:mi>V</mml:mi></mml:mrow></mml:mfenced><mml:mo>×</mml:mo><mml:msup><mml:mrow><mml:mi>d</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant="normal">'</mml:mi></mml:mrow></mml:msup></mml:mrow></mml:msup></mml:math>, where <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:msup><mml:mrow><mml:mi>d</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant="normal">'</mml:mi></mml:mrow></mml:msup></mml:math> is the dimensionality of the output node representations.

The function <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:msub><mml:mrow><mml:mi>f</mml:mi></mml:mrow><mml:mrow><mml:mi>θ</mml:mi></mml:mrow></mml:msub></mml:math> is computed through a series of message passing and aggregation steps, typically organized into <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mi>L</mml:mi></mml:math> layers. At each layer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mi>l</mml:mi><mml:mi> </mml:mi><mml:mo>∈</mml:mo><mml:mi> </mml:mi><mml:mfenced open="{" close="}" separators="|"><mml:mrow><mml:mn>1</mml:mn><mml:mo>,</mml:mo><mml:mi> </mml:mi><mml:mo>…</mml:mo><mml:mo>,</mml:mo><mml:mi> </mml:mi><mml:mi>L</mml:mi></mml:mrow></mml:mfenced></mml:math>, the node representations are updated as follows:

<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math" display="block"><mml:msubsup><mml:mrow><mml:mi>h</mml:mi></mml:mrow><mml:mrow><mml:mi>v</mml:mi></mml:mrow><mml:mrow><mml:mi>l</mml:mi></mml:mrow></mml:msubsup><mml:mo>=</mml:mo><mml:mi mathvariant="normal"> </mml:mi><mml:mi>U</mml:mi><mml:mi>P</mml:mi><mml:mi>D</mml:mi><mml:mi>A</mml:mi><mml:mi>T</mml:mi><mml:msup><mml:mrow><mml:mi>E</mml:mi></mml:mrow><mml:mrow><mml:mfenced separators="|"><mml:mrow><mml:mi>l</mml:mi></mml:mrow></mml:mfenced></mml:mrow></mml:msup><mml:mfenced separators="|"><mml:mrow><mml:msubsup><mml:mrow><mml:mi>h</mml:mi></mml:mrow><mml:mrow><mml:mi>v</mml:mi></mml:mrow><mml:mrow><mml:mi>l</mml:mi><mml:mo>-</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:msubsup><mml:mo>,</mml:mo><mml:mi mathvariant="normal"> </mml:mi><mml:mi>A</mml:mi><mml:mi>G</mml:mi><mml:msup><mml:mrow><mml:mi>G</mml:mi></mml:mrow><mml:mrow><mml:mfenced separators="|"><mml:mrow><mml:mi>l</mml:mi></mml:mrow></mml:mfenced></mml:mrow></mml:msup><mml:mfenced separators="|"><mml:mrow><mml:mfenced open="{" close="}" separators="|"><mml:mrow><mml:msubsup><mml:mrow><mml:mi>h</mml:mi></mml:mrow><mml:mrow><mml:mi>u</mml:mi></mml:mrow><mml:mrow><mml:mi>l</mml:mi><mml:mo>-</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:msubsup><mml:mo>:</mml:mo><mml:mi mathvariant="normal"> </mml:mi><mml:mi>u</mml:mi><mml:mi mathvariant="normal"> </mml:mi><mml:mo>∈</mml:mo><mml:mi mathvariant="normal"> </mml:mi><mml:mi>N</mml:mi><mml:mfenced separators="|"><mml:mrow><mml:mi>v</mml:mi></mml:mrow></mml:mfenced></mml:mrow></mml:mfenced></mml:mrow></mml:mfenced></mml:mrow></mml:mfenced></mml:math>

Let’s break this down:

  • <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:msubsup><mml:mrow><mml:mi>h</mml:mi></mml:mrow><mml:mrow><mml:mi>v</mml:mi></mml:mrow><mml:mrow><mml:mfenced separators="|"><mml:mrow><mml:mi>l</mml:mi></mml:mrow></mml:mfenced></mml:mrow></mml:msubsup><mml:mi>ϵ</mml:mi><mml:mi> </mml:mi><mml:msup><mml:mrow><mml:mi mathvariant="double-struck">R</mml:mi></mml:mrow><mml:mrow><mml:msub><mml:mrow><mml:mi>d</mml:mi></mml:mrow><mml:mrow><mml:mi>l</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:msup></mml:math> is the representation of node <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mi>v</mml:mi></mml:math> at layer<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mi> </mml:mi><mml:mi>l</mml:mi><mml:mo>,</mml:mo></mml:math> with <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:msubsup><mml:mrow><mml:mi>h</mml:mi></mml:mrow><mml:mrow><mml:mi>v</mml:mi></mml:mrow><mml:mrow><mml:mn>0</mml:mn></mml:mrow></mml:msubsup><mml:mo>=</mml:mo><mml:mi> </mml:mi><mml:msub><mml:mrow><mml:mi>x</mml:mi></mml:mrow><mml:mrow><mml:mi>v</mml:mi></mml:mrow></mml:msub></mml:math>. Here, <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mi> </mml:mi><mml:msup><mml:mrow><mml:mi mathvariant="double-struck">R</mml:mi></mml:mrow><mml:mrow><mml:mfenced separators="|"><mml:mrow><mml:msub><mml:mrow><mml:mi>d</mml:mi></mml:mrow><mml:mrow><mml:mi>l</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:mfenced></mml:mrow></mml:msup></mml:math> represents a real-valued vector space of dimension <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:msub><mml:mrow><mml:mi>d</mml:mi></mml:mrow><mml:mrow><mml:mi>l</mml:mi></mml:mrow></mml:msub></mml:math>.
  • The...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime