Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Advanced Deep Learning with TensorFlow 2 and Keras

You're reading from   Advanced Deep Learning with TensorFlow 2 and Keras Apply DL, GANs, VAEs, deep RL, unsupervised learning, object detection and segmentation, and more

Arrow left icon
Product type Paperback
Published in Feb 2020
Publisher Packt
ISBN-13 9781838821654
Length 512 pages
Edition 2nd Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Rowel Atienza Rowel Atienza
Author Profile Icon Rowel Atienza
Rowel Atienza
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. Introducing Advanced Deep Learning with Keras 2. Deep Neural Networks FREE CHAPTER 3. Autoencoders 4. Generative Adversarial Networks (GANs) 5. Improved GANs 6. Disentangled Representation GANs 7. Cross-Domain GANs 8. Variational Autoencoders (VAEs) 9. Deep Reinforcement Learning 10. Policy Gradient Methods 11. Object Detection 12. Semantic Segmentation 13. Unsupervised Learning Using Mutual Information 14. Other Books You May Enjoy
15. Index

Improved GANs

Since the introduction of Generative Adversarial Networks (GANs) in 2014[1], their popularity has rapidly increased. GANs have proven to be a useful generative model that can synthesize new data that looks real. Many of the research papers in deep learning that followed proposed measures to address the difficulties and limitations of the original GAN.

As we discussed in previous chapters, GANs can be notoriously difficult to train, and are prone to mode collapse. Mode collapse is a situation where the generator is producing outputs that look the same even though the loss functions are already optimized. In the context of MNIST digits, with mode collapse, the generator may only be producing digits 4 and 9 since they look similar. The Wasserstein GAN (WGAN)[2] addressed these problems by arguing that stable training and mode collapse can be avoided by simply replacing the GAN loss function based on Wasserstein 1, also known as the Earth Mover's Distance...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at ₹800/month. Cancel anytime