Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Active Machine Learning with Python

You're reading from   Active Machine Learning with Python Refine and elevate data quality over quantity with active learning

Arrow left icon
Product type Paperback
Published in Mar 2024
Publisher Packt
ISBN-13 9781835464946
Length 176 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Margaux Masson-Forsythe Margaux Masson-Forsythe
Author Profile Icon Margaux Masson-Forsythe
Margaux Masson-Forsythe
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Part 1: Fundamentals of Active Machine Learning
2. Chapter 1: Introducing Active Machine Learning FREE CHAPTER 3. Chapter 2: Designing Query Strategy Frameworks 4. Chapter 3: Managing the Human in the Loop 5. Part 2: Active Machine Learning in Practice
6. Chapter 4: Applying Active Learning to Computer Vision 7. Chapter 5: Leveraging Active Learning for Big Data 8. Part 3: Applying Active Machine Learning to Real-World Projects
9. Chapter 6: Evaluating and Enhancing Efficiency 10. Chapter 7: Utilizing Tools and Packages for Active ML 11. Index 12. Other Books You May Enjoy

Comparing active and passive learning

In traditional passive machine learning, models are trained on fixed and pre-existing labeled datasets, which are carefully assembled to include both data points and their respective ground truth labels. The model then goes through the dataset once, without any iteration or interaction, and learns the patterns and relationships between the features and labels. This is the passive learning approach. It’s important to note that the model only trains on the finite data it is provided and cannot actively seek out new information or modify its training based on new inputs. Moreover, the labeled datasets required for a passive learning approach come at a cost.

There are several reasons why labeling is expensive in traditional machine learning:

  • Manual labeling requires experts: Accurately labeling data often demands the expertise of domain specialists such as doctors or ecologists. However, their time is limited and valuable, making...
You have been reading a chapter from
Active Machine Learning with Python
Published in: Mar 2024
Publisher: Packt
ISBN-13: 9781835464946
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at ₹800/month. Cancel anytime