Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
The Art of Data-Driven Business

You're reading from   The Art of Data-Driven Business Transform your organization into a data-driven one with the power of Python machine learning

Arrow left icon
Product type Paperback
Published in Dec 2022
Publisher Packt
ISBN-13 9781804611036
Length 314 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Alan Bernardo Palacio Alan Bernardo Palacio
Author Profile Icon Alan Bernardo Palacio
Alan Bernardo Palacio
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Part 1: Data Analytics and Forecasting with Python
2. Chapter 1: Analyzing and Visualizing Data with Python FREE CHAPTER 3. Chapter 2: Using Machine Learning in Business Operations 4. Part 2: Market and Customer Insights
5. Chapter 3: Finding Business Opportunities with Market Insights 6. Chapter 4: Understanding Customer Preferences with Conjoint Analysis 7. Chapter 5: Selecting the Optimal Price with Price Demand Elasticity 8. Chapter 6: Product Recommendation 9. Part 3: Operation and Pricing Optimization
10. Chapter 7: Predicting Customer Churn 11. Chapter 8: Grouping Users with Customer Segmentation 12. Chapter 9: Using Historical Markdown Data to Predict Sales 13. Chapter 10: Web Analytics Optimization 14. Chapter 11: Creating a Data-Driven Culture in Business 15. Index 16. Other Books You May Enjoy

Targeting decreasing returning buyers

One important aspect of businesses is that recurring customers always buy more than new ones, so it’s important to keep an eye on them and act if we see that they are changing their behavior. One of the things that we can do is identify the clients with decreasing buying patterns and offer them new products that they are not yet buying. In this case, we will look at consumer goods distribution center data to identify these customers with decreasing purchases:

  1. First, we will import the necessary libraries, which are the following: pandas for data manipulation, NumPy for masking and NaNs handling, and scikit-surprise for collaborative filtering product recommendation.
  2. We will explore the data to determine the right strategy to normalize the data into the right format.
  3. Once the data is structured, we will set up a linear regression to determine the clients with a negative slope to identify the ones with decreasing consumption...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime