Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
TensorFlow 2 Reinforcement Learning Cookbook

You're reading from   TensorFlow 2 Reinforcement Learning Cookbook Over 50 recipes to help you build, train, and deploy learning agents for real-world applications

Arrow left icon
Product type Paperback
Published in Jan 2021
Publisher Packt
ISBN-13 9781838982546
Length 472 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Palanisamy Palanisamy
Author Profile Icon Palanisamy
Palanisamy
Arrow right icon
View More author details
Toc

Table of Contents (11) Chapters Close

Preface 1. Chapter 1: Developing Building Blocks for Deep Reinforcement Learning Using Tensorflow 2.x 2. Chapter 2: Implementing Value-Based, Policy-Based, and Actor-Critic Deep RL Algorithms FREE CHAPTER 3. Chapter 3: Implementing Advanced RL Algorithms 4. Chapter 4: Reinforcement Learning in the Real World – Building Cryptocurrency Trading Agents 5. Chapter 5: Reinforcement Learning in the Real World – Building Stock/Share Trading Agents 6. Chapter 6: Reinforcement Learning in the Real World – Building Intelligent Agents to Complete Your To-Dos 7. Chapter 7: Deploying Deep RL Agents to the Cloud 8. Chapter 8: Distributed Training for Accelerated Development of Deep RL Agents 9. Chapter 9: Deploying Deep RL Agents on Multiple Platforms 10. Other Books You May Enjoy

Building RL environment simulators as a service

This recipe will walk you through the process of converting your RL training environment/simulator into a service. This will allow you to offer Simulation-as-a-Service for training RL agents!

So far, we have trained several RL agents in a variety of environments using different simulators depending on the task to be solved. The training scripts used the Open AI Gym interface to talk to the environment running in the same process, or locally in a different process. This recipe will guide you through the process of converting any OpenAI Gym-compatible training environment (including your custom RL training environments) into a service that can be deployed locally or remotely as a service. Once built and deployed, an agent training client can connect to the sim server and train one or more agents remotely.

As a concrete example, we will take our tradegym library, which is a collection of the RL training environments for cryptocurrency...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime