Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Simplifying Data Engineering and Analytics with Delta

You're reading from   Simplifying Data Engineering and Analytics with Delta Create analytics-ready data that fuels artificial intelligence and business intelligence

Arrow left icon
Product type Paperback
Published in Jul 2022
Publisher Packt
ISBN-13 9781801814867
Length 334 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Anindita Mahapatra Anindita Mahapatra
Author Profile Icon Anindita Mahapatra
Anindita Mahapatra
Arrow right icon
View More author details
Toc

Table of Contents (18) Chapters Close

Preface 1. Section 1 – Introduction to Delta Lake and Data Engineering Principles
2. Chapter 1: Introduction to Data Engineering FREE CHAPTER 3. Chapter 2: Data Modeling and ETL 4. Chapter 3: Delta – The Foundation Block for Big Data 5. Section 2 – End-to-End Process of Building Delta Pipelines
6. Chapter 4: Unifying Batch and Streaming with Delta 7. Chapter 5: Data Consolidation in Delta Lake 8. Chapter 6: Solving Common Data Pattern Scenarios with Delta 9. Chapter 7: Delta for Data Warehouse Use Cases 10. Chapter 8: Handling Atypical Data Scenarios with Delta 11. Chapter 9: Delta for Reproducible Machine Learning Pipelines 12. Chapter 10: Delta for Data Products and Services 13. Section 3 – Operationalizing and Productionalizing Delta Pipelines
14. Chapter 11: Operationalizing Data and ML Pipelines 15. Chapter 12: Optimizing Cost and Performance with Delta 16. Chapter 13: Managing Your Data Journey 17. Other Books You May Enjoy

What is data modeling and why should you care?

When you design software, you start architecting with a paper design of the various components and how they interact. The same is true of big data systems. To get the most value out of data, you need to understand its intrinsic properties and inherent relationships. Data modeling is the process of organizing, representing, and visualizing your data so it fits the needs of the business processes. There are several functional and nonfunctional requirements around data, technology, and business that should be taken into consideration. Business operational processes and the structure of the generated data from the various operations are inputs to the data model. Let's look at some of the advantages of going through data modeling before rushing to implement a data solution.

Advantages of a data modeling exercise

At its core, data modeling is designed for persisting data and retrieving it in an optimal way. The following lists some...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime