Search icon CANCEL
Subscription
0
Cart icon
Close icon
You have no products in your basket yet
Save more on your purchases!
Savings automatically calculated. No voucher code required
Arrow left icon
All Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletters
Free Learning
Arrow right icon
Reinforcement Learning Algorithms with Python

You're reading from  Reinforcement Learning Algorithms with Python

Product type Book
Published in Oct 2019
Publisher Packt
ISBN-13 9781789131116
Pages 366 pages
Edition 1st Edition
Languages
Author (1):
Andrea Lonza Andrea Lonza
Profile icon Andrea Lonza

Table of Contents (19) Chapters

Preface 1. Section 1: Algorithms and Environments
2. The Landscape of Reinforcement Learning 3. Implementing RL Cycle and OpenAI Gym 4. Solving Problems with Dynamic Programming 5. Section 2: Model-Free RL Algorithms
6. Q-Learning and SARSA Applications 7. Deep Q-Network 8. Learning Stochastic and PG Optimization 9. TRPO and PPO Implementation 10. DDPG and TD3 Applications 11. Section 3: Beyond Model-Free Algorithms and Improvements
12. Model-Based RL 13. Imitation Learning with the DAgger Algorithm 14. Understanding Black-Box Optimization Algorithms 15. Developing the ESBAS Algorithm 16. Practical Implementation for Resolving RL Challenges 17. Assessments
18. Other Books You May Enjoy

Summary

In this chapter, we introduced a new family of RL algorithms that learn from experience by interacting with the environment. These methods differ from dynamic programming in their ability to learn a value function and consequently a policy without relying on the model of the environment.

Initially, we saw that Monte Carlo methods are a simple way to sample from the environment but because they need the full trajectory before starting to learn, they are not applicable in many real problems. To overcome these drawbacks, bootstrapping can be combined with Monte Carlo methods, giving rise to so-called temporal difference (TD) learning. Thanks to the bootstrapping technique, these algorithms can learn online (one-step learning) and reduce the variance while still converging to optimal policies. Then, we learned two one-step, tabular, model-free TD methods, namely SARSA and...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €14.99/month. Cancel anytime}