This chapter covered topics that are critical to success in deep learning projects. These included the different types of evaluation metric that can be used to evaluate the model. We looked at some issues that can come up in data preparation, including if you only have a small amount of data to train on and how to create different splits in the data, that is, how to create proper train, test, and validation datasets. We looked at two important issues that can cause the model to perform poorly in production, different data distributions, and data leakage. We saw how data augmentation can be used to improve an existing model by creating artificial data and looked at tuning hyperparameters in order to improve the performance of a deep learning model. We closed the chapter by examining a use case where we simulated a problem with different data distributions/data leakage and...
United States
United Kingdom
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Argentina
Austria
Belgium
Bulgaria
Chile
Colombia
Cyprus
Czechia
Denmark
Ecuador
Egypt
Estonia
Finland
Greece
Hungary
Indonesia
Ireland
Italy
Japan
Latvia
Lithuania
Luxembourg
Malaysia
Malta
Mexico
Netherlands
New Zealand
Norway
Philippines
Poland
Portugal
Romania
Singapore
Slovakia
Slovenia
South Africa
South Korea
Sweden
Switzerland
Taiwan
Thailand
Turkey
Ukraine