Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Python Machine Learning Cookbook

You're reading from   Python Machine Learning Cookbook 100 recipes that teach you how to perform various machine learning tasks in the real world

Arrow left icon
Product type Paperback
Published in Jun 2016
Publisher Packt
ISBN-13 9781786464477
Length 304 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Vahid Mirjalili Vahid Mirjalili
Author Profile Icon Vahid Mirjalili
Vahid Mirjalili
Prateek Joshi Prateek Joshi
Author Profile Icon Prateek Joshi
Prateek Joshi
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface 1. The Realm of Supervised Learning FREE CHAPTER 2. Constructing a Classifier 3. Predictive Modeling 4. Clustering with Unsupervised Learning 5. Building Recommendation Engines 6. Analyzing Text Data 7. Speech Recognition 8. Dissecting Time Series and Sequential Data 9. Image Content Analysis 10. Biometric Face Recognition 11. Deep Neural Networks 12. Visualizing Data Index

Building a ridge regressor

One of the main problems of linear regression is that it's sensitive to outliers. During data collection in the real world, it's quite common to wrongly measure the output. Linear regression uses ordinary least squares, which tries to minimize the squares of errors. The outliers tend to cause problems because they contribute a lot to the overall error. This tends to disrupt the entire model.

Getting ready

Let's consider the following figure:

Getting ready

The two points on the bottom are clearly outliers, but this model is trying to fit all the points. Hence, the overall model tends to be inaccurate. By visual inspection, we can see that the following figure is a better model:

Getting ready

Ordinary least squares considers every single datapoint when it's building the model. Hence, the actual model ends up looking like the dotted line as shown in the preceding figure. We can clearly see that this model is suboptimal. To avoid this, we use regularization where a penalty is imposed on the size of the coefficients. This method is called Ridge Regression.

How to do it…

Let's see how to build a ridge regressor in Python:

  1. You can load the data from the data_multi_variable.txt file. This file contains multiple values in each line. All the values except the last value form the input feature vector.
  2. Add the following lines to regressor.py. Let's initialize a ridge regressor with some parameters:
    ridge_regressor = linear_model.Ridge(alpha=0.01, fit_intercept=True, max_iter=10000)
  3. The alpha parameter controls the complexity. As alpha gets closer to 0, the ridge regressor tends to become more like a linear regressor with ordinary least squares. So, if you want to make it robust against outliers, you need to assign a higher value to alpha. We considered a value of 0.01, which is moderate.
  4. Let's train this regressor, as follows:
    ridge_regressor.fit(X_train, y_train)
    y_test_pred_ridge = ridge_regressor.predict(X_test)
    print "Mean absolute error =", round(sm.mean_absolute_error(y_test, y_test_pred_ridge), 2) 
    print "Mean squared error =", round(sm.mean_squared_error(y_test, y_test_pred_ridge), 2) 
    print "Median absolute error =", round(sm.median_absolute_error(y_test, y_test_pred_ridge), 2) 
    print "Explain variance score =", round(sm.explained_variance_score(y_test, y_test_pred_ridge), 2) 
    print "R2 score =", round(sm.r2_score(y_test, y_test_pred_ridge), 2)

Run this code to view the error metrics. You can build a linear regressor to compare and contrast the results on the same data to see the effect of introducing regularization into the model.

You have been reading a chapter from
Python Machine Learning Cookbook
Published in: Jun 2016
Publisher: Packt
ISBN-13: 9781786464477
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image