Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Python Machine Learning

You're reading from   Python Machine Learning Machine Learning and Deep Learning with Python, scikit-learn, and TensorFlow 2

Arrow left icon
Product type Paperback
Published in Dec 2019
Publisher Packt
ISBN-13 9781789955750
Length 772 pages
Edition 3rd Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Vahid Mirjalili Vahid Mirjalili
Author Profile Icon Vahid Mirjalili
Vahid Mirjalili
Sebastian Raschka Sebastian Raschka
Author Profile Icon Sebastian Raschka
Sebastian Raschka
Arrow right icon
View More author details
Toc

Table of Contents (21) Chapters Close

Preface 1. Giving Computers the Ability to Learn from Data FREE CHAPTER 2. Training Simple Machine Learning Algorithms for Classification 3. A Tour of Machine Learning Classifiers Using scikit-learn 4. Building Good Training Datasets – Data Preprocessing 5. Compressing Data via Dimensionality Reduction 6. Learning Best Practices for Model Evaluation and Hyperparameter Tuning 7. Combining Different Models for Ensemble Learning 8. Applying Machine Learning to Sentiment Analysis 9. Embedding a Machine Learning Model into a Web Application 10. Predicting Continuous Target Variables with Regression Analysis 11. Working with Unlabeled Data – Clustering Analysis 12. Implementing a Multilayer Artificial Neural Network from Scratch 13. Parallelizing Neural Network Training with TensorFlow 14. Going Deeper – The Mechanics of TensorFlow 15. Classifying Images with Deep Convolutional Neural Networks 16. Modeling Sequential Data Using Recurrent Neural Networks 17. Generative Adversarial Networks for Synthesizing New Data 18. Reinforcement Learning for Decision Making in Complex Environments 19. Other Books You May Enjoy 20. Index

Using kernel principal component analysis for nonlinear mappings

Many machine learning algorithms make assumptions about the linear separability of the input data. You have learned that the perceptron even requires perfectly linearly separable training data to converge. Other algorithms that we have covered so far assume that the lack of perfect linear separability is due to noise: Adaline, logistic regression, and the (standard) SVM to just name a few.

However, if we are dealing with nonlinear problems, which we may encounter rather frequently in real-world applications, linear transformation techniques for dimensionality reduction, such as PCA and LDA, may not be the best choice.

In this section, we will take a look at a kernelized version of PCA, or KPCA, which relates to the concepts of kernel SVM that you will remember from Chapter 3, A Tour of Machine Learning Classifiers Using scikit-learn. Using KPCA, we will learn how to transform data that is not linearly separable...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image