Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Python for Geeks

You're reading from   Python for Geeks Build production-ready applications using advanced Python concepts and industry best practices

Arrow left icon
Product type Paperback
Published in Oct 2021
Publisher Packt
ISBN-13 9781801070119
Length 546 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Muhammad Asif Muhammad Asif
Author Profile Icon Muhammad Asif
Muhammad Asif
Arrow right icon
View More author details
Toc

Table of Contents (20) Chapters Close

Preface 1. Section 1: Python, beyond the Basics
2. Chapter 1: Optimal Python Development Life Cycle FREE CHAPTER 3. Chapter 2: Using Modularization to Handle Complex Projects 4. Chapter 3: Advanced Object-Oriented Python Programming 5. Section 2: Advanced Programming Concepts
6. Chapter 4: Python Libraries for Advanced Programming 7. Chapter 5: Testing and Automation with Python 8. Chapter 6: Advanced Tips and Tricks in Python 9. Section 3: Scaling beyond a Single Thread
10. Chapter 7: Multiprocessing, Multithreading, and Asynchronous Programming 11. Chapter 8: Scaling out Python Using Clusters 12. Chapter 9: Python Programming for the Cloud 13. Section 4: Using Python for Web, Cloud, and Network Use Cases
14. Chapter 10: Using Python for Web Development and REST API 15. Chapter 11: Using Python for Microservices Development 16. Chapter 12: Building Serverless Functions using Python 17. Chapter 13: Python and Machine Learning 18. Chapter 14: Using Python for Network Automation 19. Other Books You May Enjoy

Using Python for machine learning

Python is a popular language in the data scientist community because of its simplicity, cross-platform compatibilities, and rich support for data analysis and data processing through its libraries. One of the key steps in machine learning is preparing data for building the ML models, and Python is a natural winner in doing this. The only challenge in using Python is that it is an interpreted language, so the speed of executing code is slow in comparison to languages such as C. But this is not a major issue as there are libraries available to maximize Python's speed by using multiple cores of central processing units (CPUs) or graphics processing units (GPUs) in parallel.  

In the next subsection, we will introduce a few Python libraries for machine learning.

Introducing machine learning libraries in Python

Python comes with several machine learning libraries. We already mentioned supporting libraries such as NumPy, SciPy, and...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime