Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Python Data Analysis

You're reading from   Python Data Analysis Perform data collection, data processing, wrangling, visualization, and model building using Python

Arrow left icon
Product type Paperback
Published in Feb 2021
Publisher Packt
ISBN-13 9781789955248
Length 478 pages
Edition 3rd Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Ivan Idris Ivan Idris
Author Profile Icon Ivan Idris
Ivan Idris
Avinash Navlani Avinash Navlani
Author Profile Icon Avinash Navlani
Avinash Navlani
Arrow right icon
View More author details
Toc

Table of Contents (20) Chapters Close

Preface 1. Section 1: Foundation for Data Analysis
2. Getting Started with Python Libraries FREE CHAPTER 3. NumPy and pandas 4. Statistics 5. Linear Algebra 6. Section 2: Exploratory Data Analysis and Data Cleaning
7. Data Visualization 8. Retrieving, Processing, and Storing Data 9. Cleaning Messy Data 10. Signal Processing and Time Series 11. Section 3: Deep Dive into Machine Learning
12. Supervised Learning - Regression Analysis 13. Supervised Learning - Classification Techniques 14. Unsupervised Learning - PCA and Clustering 15. Section 4: NLP, Image Analytics, and Parallel Computing
16. Analyzing Textual Data 17. Analyzing Image Data 18. Parallel Computing Using Dask 19. Other Books You May Enjoy

Drawing on images

Let's learn how to draw different figure shapes, such as a line, square, or triangle, on an image using OpenCV. When we draw any shape on an image, we need to take care of the coordinates, color, and thickness of the shape. Let's first create a blank image with a white or black background:

# Import cv2 latest version of OpenCV library
import cv2

# Import numeric python (NumPy) library import numpy as np
# Import matplotlib for showing the image import matplotlib.pyplot as plt
# Magic function to render the figure in a notebook %matplotlib inline
# Let's create a black image image_shape=(600,600,3) black_image = np.zeros(shape=image_shape,dtype=np.int16)
# Show the image plt.imshow(black_image)

This results in the following output:

In the preceding example, we created a blank image with a black background using the zeros() function of the NumPy module. The zeros() function creates an array of the given size and fills the matrix with zeros.

Let's create...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime