Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Microsoft Power BI Cookbook

You're reading from   Microsoft Power BI Cookbook Gain expertise in Power BI with over 90 hands-on recipes, tips, and use cases

Arrow left icon
Product type Paperback
Published in Sep 2021
Publisher Packt
ISBN-13 9781801813044
Length 656 pages
Edition 2nd Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Greg Deckler Greg Deckler
Author Profile Icon Greg Deckler
Greg Deckler
Brett Powell Brett Powell
Author Profile Icon Brett Powell
Brett Powell
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. Configuring Power BI Tools 2. Accessing and Retrieving Data FREE CHAPTER 3. Building a Power BI Data Model 4. Authoring Power BI Reports 5. Working in the Service 6. Getting Serious with Date Intelligence 7. Parameterizing Power BI Solutions 8. Implementing Dynamic User-Based Visibility in Power BI 9. Applying Advanced Analytics and Custom Visuals 10. Administering and Monitoring Power BI 11. Enhancing and Optimizing Existing Power BI Solutions 12. Deploying and Distributing Power BI Content 13. Integrating Power BI with Other Applications 14. Other Book You May Enjoy
15. Index

Creating Custom Columns

Business users often extend the outputs of existing reports and data models with additional columns to help them analyze and present data. The logic of these columns is generally implemented through Excel formulas or as calculated DAX columns. A superior solution, particularly if the logic cannot quickly be migrated to a data warehouse or IT resource, is to create the columns via the Power Query Editor and M language.

Developing custom columns can also significantly enhance the ease of use and analytical power of data models and the visualizations they support. In this recipe, columns are created to apply a custom naming format and simplify the analysis of a customer dimension via existing columns.

Getting ready

To get ready for this recipe, import the DimCustomer table from the AdventureWorksDW2019 database by doing the following:

  1. Open Power BI Desktop and choose Transform data from the ribbon of the Home tab to open the Power Query Editor.
  2. Create an Import mode data source query called AdWorksDW. This query should be similar to the following:
    let
        Source = Sql.Database("localhost\MSSQLSERVERDEV", "AdventureWorksDW2019")
    in
        Source
    
  3. Isolate this query in a query group called Data Sources.
  4. Right-click AdWorksDW and choose Reference, select the DimCustomer table in the data preview area, and rename this query DimCustomer.

For additional details on performing these steps, see the Managing Queries and Data Sources recipe in this chapter.

How to Create Custom Columns

To implement this recipe, perform the following steps:

  1. Use Table.SelectColumns to retrieve the required source columns from the DimCustomer table, FirstName, LastName, MiddleName, Title and BirthDate.
    let
        Source = AdWorksDW,
        dbo_DimCustomer = Source{[Schema="dbo",Item="DimCustomer"]}[Data],
        SelectColumns = 
            Table.SelectColumns(dbo_DimCustomer,
                {"FirstName", "LastName", "MiddleName", "Title", "BirthDate"}
            )
    in
        SelectColumns
    
  2. Write a Table.AddColumns function with an if...then expression that accounts for the different scenarios given a target format of Mr. John A. Doe:
        NameFormatTble = 
            Table.AddColumn(
                SelectColumns,"Formatted Name", each
                    if [Title] = null and [MiddleName] = null 
                        then [FirstName] & " " & [LastName] 
                    else if [Title] = null 
                        then [FirstName] & " " & Text.Range([MiddleName],0,1) 
                                & ". " & [LastName]
                    else
                        [Title] & " " & [FirstName] & " " 
                            & Text.Range([MiddleName],0,1) & ". " & [LastName]
            )
    
  3. Add variables that allow the expression to support the comparison between the current system date and the BirthDate column.
    let
        CurrentDate = DateTime.Date(DateTime.LocalNow()),
        CurrentYear = Date.Year(CurrentDate),
        CurrentMonth = Date.Month(CurrentDate),
        CurrentDay = Date.Day(CurrentDate),
        Source = AdWorksDW,
    
  4. Use the Table.AddColumn function to create Customer Year, Customer Month, and Customer Day columns based upon the BirthDate column.
        AddCustomerYear = 
            Table.AddColumn(
                NameFormatTble, "Customer Year", each Date.Year([BirthDate]),
                Int64.Type
            ),
        AddCustomerMonth = 
            Table.AddColumn(
                AddCustomerYear, "Customer Month", each Date.Month([BirthDate]),
                Int64.Type
            ),
        AddCustomerDay = 
            Table.AddColumn(
                AddCustomerMonth, "Customer Day", each Date.Day([BirthDate]),
                Int64.Type
            )
    
  5. Add an Age column via an if...then expression.
        CustomerAge = 
            Table.AddColumn(
                AddCustomerDay,"Customer Age", each
                if [Customer Month] < CurrentMonth 
                    then CurrentYear - [Customer Year]
                else if [Customer Month] > CurrentMonth 
                    then CurrentYear - [Customer Year] - 1
                else if [Customer Day] < CurrentDay 
                    then CurrentYear - [Customer Year]
                else CurrentYear - [Customer Year] - 1
            )
    
  6. Add a Customer Age Segment column via the column computed in step 4.
        CustomerSegment = 
            Table.AddColumn(
                CustomerAge, "Customer Age Segment", each
                if [Customer Age] < 30 then "Less than 30"
                else if [Customer Age] < 40 then "30 to 39"
                else if [Customer Age] < 50 then "40 to 49"
                else if [Customer Age] < 60 then "50 to 59"
                else "60 or Older"
            )
    

How it works

In the NameFormatTble expression the Table.AddColumn function is used, coupled with an if...then expression. M is a case-sensitive language, so writing IF instead of if or Table.Addcolumn instead of Table.AddColumn will return an error. if...then expressions follow the following structure:

if <condition1> then <result1> else <result2>

All three inputs (condition1, result1, and result2) accept M expressions. if expressions can be nested together with the following structure:

if <condition1> then <result1> else if <condition2> then <result2> else <result3>

The equivalent of a SQL CASE expression is not available in M. However, the order of conditions specified in if...then expressions drives the evaluation process. Multiple conditions could be true but the second and later conditions will be discarded and not evaluated. If the value produced by the if condition is not a logical value, an error is raised.

The three if...then conditions in the NameFormatTble expression account for all scenarios to return the formatted name, since the query must account for nulls in the Middle Name and Title columns, as well as different values in the Middle Name column. Text.Range is used to extract the first character of the middle name.

For the variables CurrentDate, CurrentYear, CurrentMonth, and CurrentDay, the DateTime.LocalNow function is used as the source for the current date; it is then used for year, month, and day.

For the AddCustomerYear, AddCustomerMonth, and AddCustomerDay expressions, the Int64.Type value is passed to the optional type parameter of Table.AddColumn to set the new columns as whole numbers.

For the CustomerAge and CustomerSegment expressions, nested if…then expressions are used. This method is used because, currently, the equivalent of a DATEDIFF function (T-SQL, DAX) with date intervals like Year, Month, Week, and so on, are not available in M. A Duration.Days function can be used for day intervals and additional duration functions are available for hour, minute, and second intervals.

The CustomerAge expression compares the CurrentMonth and CurrentDay variables against the values of the customer columns created in the AddCustomerMonth and AddCustomerDay expressions in order to compute the age of the customer using the CurrentYear variable and the column created by the AddCustomerYear expression. The column created by the CustomerAge column is then used in the CustomerSegement expression to derive the age segmentation column. The new custom columns can be used to support various visualizations based upon the ages and segmentation of customers.

There's more...

The Power Query Editor provides graphical user interfaces for adding columns. These interfaces provide mechanisms for adding columns that are an alternative to writing out the code manually. In essence, the M code for the added columns is generated as an output from these interfaces.

One such interface is the Column From Examples feature, which allows users to simply type examples of a desired column's output. The engine determines which M functions and series of steps to add to the query that return results consistent with the examples provided. To explore this feature, follow these steps:

  1. Create a new query referencing the AdWorksDW query.
  2. Select the DimCustomer table.
  3. Select the Title, FirstName, MiddleName, LastName, and BirthDate columns and remove all other columns.
  4. Select the Add Column tab and then choose the Column From Examples button in the ribbon.

    Figure 2.33: Column From Examples feature

  5. Type the customer's FirstName, MiddleName, and LastName values into the first row and hit the Enter key. Notice that the rest of the rows are automatically calculated based upon this first row.

    Figure 2.34: Column From Examples interface

  6. Click the OK button to accept the transformation.

Another interface for adding columns is the Condition Column feature. This feature provides a method of creating conditional columns as an alternative to writing out the if...then expressions. To see how this feature operates, follow these steps:

  1. Select the Add Column tab and then select Conditional Column from the ribbon.

    Figure 2.35: Conditional Column feature

  2. Fill in the fields on the Add Conditional Column dialog, using the Add Clause button to add additional else if statements; click the OK button to exit the dialog and create the new column.

Figure 2.36: Add Conditional Column dialog

Any column from the table can be referenced, and multiple created steps can be moved up or down the order of evaluation using the ellipses (). Open the Advanced Editor to inspect the code created.

Figure 2.37: Added conditional column M code

See also

You have been reading a chapter from
Microsoft Power BI Cookbook - Second Edition
Published in: Sep 2021
Publisher: Packt
ISBN-13: 9781801813044
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image