Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases now! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Microsoft Azure AI Fundamentals AI-900 Exam Guide

You're reading from   Microsoft Azure AI Fundamentals AI-900 Exam Guide Gain proficiency in Azure AI and machine learning concepts and services to excel in the AI-900 exam

Arrow left icon
Product type Paperback
Published in May 2024
Publisher Packt
ISBN-13 9781835885666
Length 288 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Steve Miles Steve Miles
Author Profile Icon Steve Miles
Steve Miles
Aaron Guilmette Aaron Guilmette
Author Profile Icon Aaron Guilmette
Aaron Guilmette
Arrow right icon
View More author details
Toc

Table of Contents (20) Chapters Close

Preface 1. Part 1: Identify Features of Common AI Workloads FREE CHAPTER
2. Chapter 1: Identify Features of Common AI Workloads 3. Chapter 2: Identify the Guiding Principles for Responsible AI 4. Part 2: Describe the Fundamental Principles of Machine Learning on Azure
5. Chapter 3: Identify Common Machine Learning Techniques 6. Chapter 4: Describe Core Machine Learning Concepts 7. Chapter 5: Describe Azure Machine Learning Capabilities 8. Part 3: Describe Features of Computer Vision Workloads on Azure
9. Chapter 6: Identify Common Types of Computer Vision Solutions 10. Chapter 7: Identify Azure Tools and Services for Computer Vision Tasks 11. Part 4: Describe Features of Natural Language Processing (NLP) Workloads on Azure
12. Chapter 8: Identify Features of Common NLP Workload Scenarios 13. Chapter 9: Identify Azure Tools and Services for NLP Workloads 14. Part 5: Describe Features of Generative AI Workloads on Azure
15. Chapter 10: Identify Features of Generative AI Solutions 16. Chapter 11: Identify Capabilities of Azure OpenAI Service 17. Chapter 12: Accessing the Online Practice Resources 18. Index 19. Other Books You May Enjoy

Identify features and uses for language modeling

As we saw in the NLP scenarios section, language modeling is one of the tasks that can be provided by NLP as part of the language area of AI.

Language modeling is based on the concept of prediction; the next word in a sequence of words is predicted by the model based on the “preceding words’ context.”

Language modeling requires the construction of a probabilistic model for natural language (NL). This model converts sequences of words into “probabilities,” estimating the probability that a certain word will occur based on how words precede or follow it. One of the most prevalent approaches to language modeling is through n-grams or more advanced techniques, such as recurrent neural networks (RNNs) and transformer models.

In the following subsections, you will look at two of the core capabilities of a language model: to “understand conversations” and to “answer questions...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime